Metamath Proof Explorer


Theorem frgrncvvdeqlem6

Description: Lemma 6 for frgrncvvdeq . (Contributed by Alexander van der Vekens, 23-Dec-2017) (Revised by AV, 10-May-2021) (Proof shortened by AV, 30-Dec-2021)

Ref Expression
Hypotheses frgrncvvdeq.v1 V = Vtx G
frgrncvvdeq.e E = Edg G
frgrncvvdeq.nx D = G NeighbVtx X
frgrncvvdeq.ny N = G NeighbVtx Y
frgrncvvdeq.x φ X V
frgrncvvdeq.y φ Y V
frgrncvvdeq.ne φ X Y
frgrncvvdeq.xy φ Y D
frgrncvvdeq.f φ G FriendGraph
frgrncvvdeq.a A = x D ι y N | x y E
Assertion frgrncvvdeqlem6 φ x D x A x E

Proof

Step Hyp Ref Expression
1 frgrncvvdeq.v1 V = Vtx G
2 frgrncvvdeq.e E = Edg G
3 frgrncvvdeq.nx D = G NeighbVtx X
4 frgrncvvdeq.ny N = G NeighbVtx Y
5 frgrncvvdeq.x φ X V
6 frgrncvvdeq.y φ Y V
7 frgrncvvdeq.ne φ X Y
8 frgrncvvdeq.xy φ Y D
9 frgrncvvdeq.f φ G FriendGraph
10 frgrncvvdeq.a A = x D ι y N | x y E
11 1 2 3 4 5 6 7 8 9 10 frgrncvvdeqlem5 φ x D A x = G NeighbVtx x N
12 fvex A x V
13 elinsn A x V G NeighbVtx x N = A x A x G NeighbVtx x A x N
14 12 13 mpan G NeighbVtx x N = A x A x G NeighbVtx x A x N
15 frgrusgr G FriendGraph G USGraph
16 2 nbusgreledg G USGraph A x G NeighbVtx x A x x E
17 prcom A x x = x A x
18 17 eleq1i A x x E x A x E
19 16 18 bitrdi G USGraph A x G NeighbVtx x x A x E
20 19 biimpd G USGraph A x G NeighbVtx x x A x E
21 9 15 20 3syl φ A x G NeighbVtx x x A x E
22 21 adantr φ x D A x G NeighbVtx x x A x E
23 22 com12 A x G NeighbVtx x φ x D x A x E
24 23 adantr A x G NeighbVtx x A x N φ x D x A x E
25 14 24 syl G NeighbVtx x N = A x φ x D x A x E
26 25 eqcoms A x = G NeighbVtx x N φ x D x A x E
27 11 26 mpcom φ x D x A x E