Metamath Proof Explorer


Theorem frgrncvvdeqlem7

Description: Lemma 7 for frgrncvvdeq . This corresponds to statement 1 in Huneke p. 1: "This common neighbor cannot be x, as x and y are not adjacent.". This is only an observation, which is not required to proof the friendship theorem. (Contributed by Alexander van der Vekens, 23-Dec-2017) (Revised by AV, 10-May-2021)

Ref Expression
Hypotheses frgrncvvdeq.v1 V = Vtx G
frgrncvvdeq.e E = Edg G
frgrncvvdeq.nx D = G NeighbVtx X
frgrncvvdeq.ny N = G NeighbVtx Y
frgrncvvdeq.x φ X V
frgrncvvdeq.y φ Y V
frgrncvvdeq.ne φ X Y
frgrncvvdeq.xy φ Y D
frgrncvvdeq.f φ G FriendGraph
frgrncvvdeq.a A = x D ι y N | x y E
Assertion frgrncvvdeqlem7 φ x D A x X

Proof

Step Hyp Ref Expression
1 frgrncvvdeq.v1 V = Vtx G
2 frgrncvvdeq.e E = Edg G
3 frgrncvvdeq.nx D = G NeighbVtx X
4 frgrncvvdeq.ny N = G NeighbVtx Y
5 frgrncvvdeq.x φ X V
6 frgrncvvdeq.y φ Y V
7 frgrncvvdeq.ne φ X Y
8 frgrncvvdeq.xy φ Y D
9 frgrncvvdeq.f φ G FriendGraph
10 frgrncvvdeq.a A = x D ι y N | x y E
11 1 2 3 4 5 6 7 8 9 10 frgrncvvdeqlem5 φ x D A x = G NeighbVtx x N
12 fvex A x V
13 12 snid A x A x
14 eleq2 A x = G NeighbVtx x N A x A x A x G NeighbVtx x N
15 14 biimpa A x = G NeighbVtx x N A x A x A x G NeighbVtx x N
16 elin A x G NeighbVtx x N A x G NeighbVtx x A x N
17 1 2 3 4 5 6 7 8 9 10 frgrncvvdeqlem1 φ X N
18 df-nel X N ¬ X N
19 nelelne ¬ X N A x N A x X
20 18 19 sylbi X N A x N A x X
21 17 20 syl φ A x N A x X
22 21 adantr φ x D A x N A x X
23 22 com12 A x N φ x D A x X
24 16 23 simplbiim A x G NeighbVtx x N φ x D A x X
25 15 24 syl A x = G NeighbVtx x N A x A x φ x D A x X
26 13 25 mpan2 A x = G NeighbVtx x N φ x D A x X
27 11 26 mpcom φ x D A x X
28 27 ralrimiva φ x D A x X