Metamath Proof Explorer


Theorem frgrncvvdeqlem9

Description: Lemma 9 for frgrncvvdeq . This corresponds to statement 3 in Huneke p. 1: "By symmetry the map is onto". (Contributed by Alexander van der Vekens, 24-Dec-2017) (Revised by AV, 10-May-2021) (Proof shortened by AV, 12-Feb-2022)

Ref Expression
Hypotheses frgrncvvdeq.v1 V = Vtx G
frgrncvvdeq.e E = Edg G
frgrncvvdeq.nx D = G NeighbVtx X
frgrncvvdeq.ny N = G NeighbVtx Y
frgrncvvdeq.x φ X V
frgrncvvdeq.y φ Y V
frgrncvvdeq.ne φ X Y
frgrncvvdeq.xy φ Y D
frgrncvvdeq.f φ G FriendGraph
frgrncvvdeq.a A = x D ι y N | x y E
Assertion frgrncvvdeqlem9 φ A : D onto N

Proof

Step Hyp Ref Expression
1 frgrncvvdeq.v1 V = Vtx G
2 frgrncvvdeq.e E = Edg G
3 frgrncvvdeq.nx D = G NeighbVtx X
4 frgrncvvdeq.ny N = G NeighbVtx Y
5 frgrncvvdeq.x φ X V
6 frgrncvvdeq.y φ Y V
7 frgrncvvdeq.ne φ X Y
8 frgrncvvdeq.xy φ Y D
9 frgrncvvdeq.f φ G FriendGraph
10 frgrncvvdeq.a A = x D ι y N | x y E
11 1 2 3 4 5 6 7 8 9 10 frgrncvvdeqlem4 φ A : D N
12 9 adantr φ n N G FriendGraph
13 4 eleq2i n N n G NeighbVtx Y
14 1 nbgrisvtx n G NeighbVtx Y n V
15 14 a1i φ n G NeighbVtx Y n V
16 13 15 syl5bi φ n N n V
17 16 imp φ n N n V
18 5 adantr φ n N X V
19 1 2 3 4 5 6 7 8 9 10 frgrncvvdeqlem1 φ X N
20 df-nel X N ¬ X N
21 nelelne ¬ X N n N n X
22 20 21 sylbi X N n N n X
23 19 22 syl φ n N n X
24 23 imp φ n N n X
25 17 18 24 3jca φ n N n V X V n X
26 12 25 jca φ n N G FriendGraph n V X V n X
27 1 2 frcond2 G FriendGraph n V X V n X ∃! m V n m E m X E
28 27 imp G FriendGraph n V X V n X ∃! m V n m E m X E
29 reurex ∃! m V n m E m X E m V n m E m X E
30 df-rex m V n m E m X E m m V n m E m X E
31 29 30 sylib ∃! m V n m E m X E m m V n m E m X E
32 26 28 31 3syl φ n N m m V n m E m X E
33 frgrusgr G FriendGraph G USGraph
34 2 nbusgreledg G USGraph m G NeighbVtx X m X E
35 34 bicomd G USGraph m X E m G NeighbVtx X
36 9 33 35 3syl φ m X E m G NeighbVtx X
37 36 biimpa φ m X E m G NeighbVtx X
38 3 eleq2i m D m G NeighbVtx X
39 37 38 sylibr φ m X E m D
40 39 ad2ant2rl φ n N n m E m X E m D
41 2 nbusgreledg G USGraph n G NeighbVtx m n m E
42 41 biimpar G USGraph n m E n G NeighbVtx m
43 42 a1d G USGraph n m E m X E n G NeighbVtx m
44 43 expimpd G USGraph n m E m X E n G NeighbVtx m
45 9 33 44 3syl φ n m E m X E n G NeighbVtx m
46 45 adantr φ n N n m E m X E n G NeighbVtx m
47 46 imp φ n N n m E m X E n G NeighbVtx m
48 elin n G NeighbVtx m N n G NeighbVtx m n N
49 simpl φ m X E φ
50 49 39 jca φ m X E φ m D
51 preq1 x = m x y = m y
52 51 eleq1d x = m x y E m y E
53 52 riotabidv x = m ι y N | x y E = ι y N | m y E
54 53 cbvmptv x D ι y N | x y E = m D ι y N | m y E
55 10 54 eqtri A = m D ι y N | m y E
56 1 2 3 4 5 6 7 8 9 55 frgrncvvdeqlem5 φ m D A m = G NeighbVtx m N
57 eleq2 G NeighbVtx m N = A m n G NeighbVtx m N n A m
58 57 eqcoms A m = G NeighbVtx m N n G NeighbVtx m N n A m
59 elsni n A m n = A m
60 58 59 syl6bi A m = G NeighbVtx m N n G NeighbVtx m N n = A m
61 50 56 60 3syl φ m X E n G NeighbVtx m N n = A m
62 61 expcom m X E φ n G NeighbVtx m N n = A m
63 62 com3r n G NeighbVtx m N m X E φ n = A m
64 48 63 sylbir n G NeighbVtx m n N m X E φ n = A m
65 64 ex n G NeighbVtx m n N m X E φ n = A m
66 65 com14 φ n N m X E n G NeighbVtx m n = A m
67 66 imp φ n N m X E n G NeighbVtx m n = A m
68 67 adantld φ n N n m E m X E n G NeighbVtx m n = A m
69 68 imp φ n N n m E m X E n G NeighbVtx m n = A m
70 47 69 mpd φ n N n m E m X E n = A m
71 40 70 jca φ n N n m E m X E m D n = A m
72 71 ex φ n N n m E m X E m D n = A m
73 72 adantld φ n N m V n m E m X E m D n = A m
74 73 eximdv φ n N m m V n m E m X E m m D n = A m
75 32 74 mpd φ n N m m D n = A m
76 df-rex m D n = A m m m D n = A m
77 75 76 sylibr φ n N m D n = A m
78 77 ralrimiva φ n N m D n = A m
79 dffo3 A : D onto N A : D N n N m D n = A m
80 11 78 79 sylanbrc φ A : D onto N