Step |
Hyp |
Ref |
Expression |
1 |
|
frgrncvvdeq.v1 |
|
2 |
|
frgrncvvdeq.e |
|
3 |
|
frgrncvvdeq.nx |
|
4 |
|
frgrncvvdeq.ny |
|
5 |
|
frgrncvvdeq.x |
|
6 |
|
frgrncvvdeq.y |
|
7 |
|
frgrncvvdeq.ne |
|
8 |
|
frgrncvvdeq.xy |
|
9 |
|
frgrncvvdeq.f |
|
10 |
|
frgrncvvdeq.a |
|
11 |
1 2 3 4 5 6 7 8 9 10
|
frgrncvvdeqlem4 |
|
12 |
9
|
adantr |
|
13 |
4
|
eleq2i |
|
14 |
1
|
nbgrisvtx |
|
15 |
14
|
a1i |
|
16 |
13 15
|
syl5bi |
|
17 |
16
|
imp |
|
18 |
5
|
adantr |
|
19 |
1 2 3 4 5 6 7 8 9 10
|
frgrncvvdeqlem1 |
|
20 |
|
df-nel |
|
21 |
|
nelelne |
|
22 |
20 21
|
sylbi |
|
23 |
19 22
|
syl |
|
24 |
23
|
imp |
|
25 |
17 18 24
|
3jca |
|
26 |
12 25
|
jca |
|
27 |
1 2
|
frcond2 |
|
28 |
27
|
imp |
|
29 |
|
reurex |
|
30 |
|
df-rex |
|
31 |
29 30
|
sylib |
|
32 |
26 28 31
|
3syl |
|
33 |
|
frgrusgr |
|
34 |
2
|
nbusgreledg |
|
35 |
34
|
bicomd |
|
36 |
9 33 35
|
3syl |
|
37 |
36
|
biimpa |
|
38 |
3
|
eleq2i |
|
39 |
37 38
|
sylibr |
|
40 |
39
|
ad2ant2rl |
|
41 |
2
|
nbusgreledg |
|
42 |
41
|
biimpar |
|
43 |
42
|
a1d |
|
44 |
43
|
expimpd |
|
45 |
9 33 44
|
3syl |
|
46 |
45
|
adantr |
|
47 |
46
|
imp |
|
48 |
|
elin |
|
49 |
|
simpl |
|
50 |
49 39
|
jca |
|
51 |
|
preq1 |
|
52 |
51
|
eleq1d |
|
53 |
52
|
riotabidv |
|
54 |
53
|
cbvmptv |
|
55 |
10 54
|
eqtri |
|
56 |
1 2 3 4 5 6 7 8 9 55
|
frgrncvvdeqlem5 |
|
57 |
|
eleq2 |
|
58 |
57
|
eqcoms |
|
59 |
|
elsni |
|
60 |
58 59
|
syl6bi |
|
61 |
50 56 60
|
3syl |
|
62 |
61
|
expcom |
|
63 |
62
|
com3r |
|
64 |
48 63
|
sylbir |
|
65 |
64
|
ex |
|
66 |
65
|
com14 |
|
67 |
66
|
imp |
|
68 |
67
|
adantld |
|
69 |
68
|
imp |
|
70 |
47 69
|
mpd |
|
71 |
40 70
|
jca |
|
72 |
71
|
ex |
|
73 |
72
|
adantld |
|
74 |
73
|
eximdv |
|
75 |
32 74
|
mpd |
|
76 |
|
df-rex |
|
77 |
75 76
|
sylibr |
|
78 |
77
|
ralrimiva |
|
79 |
|
dffo3 |
|
80 |
11 78 79
|
sylanbrc |
|