Step |
Hyp |
Ref |
Expression |
1 |
|
frgrreggt1.v |
|
2 |
|
simp1 |
|
3 |
|
simp2 |
|
4 |
|
hashcl |
|
5 |
|
0red |
|
6 |
|
3re |
|
7 |
6
|
a1i |
|
8 |
|
nn0re |
|
9 |
5 7 8
|
3jca |
|
10 |
9
|
adantr |
|
11 |
|
3pos |
|
12 |
11
|
a1i |
|
13 |
|
simpr |
|
14 |
|
lttr |
|
15 |
14
|
imp |
|
16 |
10 12 13 15
|
syl12anc |
|
17 |
16
|
ex |
|
18 |
|
ltne |
|
19 |
5 17 18
|
syl6an |
|
20 |
|
hasheq0 |
|
21 |
20
|
necon3bid |
|
22 |
21
|
biimpcd |
|
23 |
19 22
|
syl6 |
|
24 |
23
|
com23 |
|
25 |
4 24
|
mpcom |
|
26 |
25
|
a1i |
|
27 |
26
|
3imp |
|
28 |
2 3 27
|
3jca |
|
29 |
28
|
ad2antrl |
|
30 |
|
simpl |
|
31 |
1
|
frgrregord13 |
|
32 |
29 30 31
|
syl2anc |
|
33 |
|
1red |
|
34 |
6
|
a1i |
|
35 |
8
|
adantr |
|
36 |
|
1lt3 |
|
37 |
36
|
a1i |
|
38 |
33 34 35 37 13
|
lttrd |
|
39 |
33 38
|
gtned |
|
40 |
|
eqneqall |
|
41 |
39 40
|
syl5com |
|
42 |
|
ltne |
|
43 |
7 42
|
sylan |
|
44 |
|
eqneqall |
|
45 |
43 44
|
syl5com |
|
46 |
41 45
|
jaod |
|
47 |
46
|
ex |
|
48 |
4 47
|
syl |
|
49 |
48
|
a1i |
|
50 |
49
|
3imp |
|
51 |
50
|
ad2antrl |
|
52 |
32 51
|
mpd |
|
53 |
52
|
ex |
|
54 |
|
ax-1 |
|
55 |
53 54
|
pm2.61i |
|
56 |
55
|
ralrimiva |
|