Step |
Hyp |
Ref |
Expression |
1 |
|
frgrreggt1.v |
|
2 |
|
ancom |
|
3 |
|
ancom |
|
4 |
2 3
|
anbi12i |
|
5 |
4
|
biimpi |
|
6 |
5
|
ancomd |
|
7 |
1
|
numclwwlk7lem |
|
8 |
6 7
|
syl |
|
9 |
|
neanior |
|
10 |
|
nn0re |
|
11 |
|
1re |
|
12 |
|
lenlt |
|
13 |
10 11 12
|
sylancl |
|
14 |
13
|
adantl |
|
15 |
|
elnnne0 |
|
16 |
|
nnle1eq1 |
|
17 |
16
|
biimpd |
|
18 |
15 17
|
sylbir |
|
19 |
18
|
a1d |
|
20 |
19
|
expimpd |
|
21 |
20
|
impcom |
|
22 |
14 21
|
sylbird |
|
23 |
1
|
fveq2i |
|
24 |
23
|
eqeq1i |
|
25 |
24
|
biimpi |
|
26 |
|
simpr |
|
27 |
26
|
adantl |
|
28 |
|
rusgr1vtx |
|
29 |
25 27 28
|
syl2an |
|
30 |
29
|
orcd |
|
31 |
30
|
ex |
|
32 |
31
|
a1d |
|
33 |
|
eqid |
|
34 |
1 33
|
rusgrprop0 |
|
35 |
|
simp2 |
|
36 |
|
hashnncl |
|
37 |
|
df-ne |
|
38 |
|
nngt1ne1 |
|
39 |
38
|
biimprd |
|
40 |
37 39
|
syl5bir |
|
41 |
36 40
|
syl6bir |
|
42 |
41
|
imp |
|
43 |
42
|
impcom |
|
44 |
1
|
vdgn1frgrv3 |
|
45 |
35 43 44
|
3imp3i2an |
|
46 |
|
r19.26 |
|
47 |
|
r19.2z |
|
48 |
|
neeq1 |
|
49 |
48
|
biimpd |
|
50 |
49
|
impcom |
|
51 |
|
eqneqall |
|
52 |
51
|
com12 |
|
53 |
50 52
|
syl |
|
54 |
53
|
rexlimivw |
|
55 |
47 54
|
syl |
|
56 |
55
|
ex |
|
57 |
46 56
|
syl5bir |
|
58 |
57
|
expd |
|
59 |
58
|
com34 |
|
60 |
59
|
adantl |
|
61 |
60
|
3ad2ant3 |
|
62 |
45 61
|
mpd |
|
63 |
62
|
3exp |
|
64 |
63
|
com15 |
|
65 |
64
|
3ad2ant3 |
|
66 |
34 65
|
syl |
|
67 |
66
|
impcom |
|
68 |
67
|
impcom |
|
69 |
68
|
com13 |
|
70 |
32 69
|
pm2.61i |
|
71 |
22 70
|
syl6 |
|
72 |
71
|
ex |
|
73 |
72
|
com23 |
|
74 |
9 73
|
sylbir |
|
75 |
74
|
impcom |
|
76 |
75
|
com13 |
|
77 |
8 76
|
mpd |
|
78 |
77
|
com12 |
|
79 |
78
|
exp4b |
|
80 |
|
simprl |
|
81 |
|
simpl |
|
82 |
81
|
ad2antlr |
|
83 |
|
simpr |
|
84 |
83
|
ad2antlr |
|
85 |
|
simpl |
|
86 |
85 26
|
anim12ci |
|
87 |
1
|
frgrreggt1 |
|
88 |
87
|
imp |
|
89 |
80 82 84 86 88
|
syl31anc |
|
90 |
89
|
olcd |
|
91 |
90
|
exp31 |
|
92 |
|
2a1 |
|
93 |
79 91 92
|
pm2.61ii |
|