Step |
Hyp |
Ref |
Expression |
1 |
|
frgrreggt1.v |
|
2 |
|
simp1 |
|
3 |
2
|
anim1ci |
|
4 |
|
simp3 |
|
5 |
|
simp2 |
|
6 |
4 5
|
jca |
|
7 |
6
|
adantr |
|
8 |
1
|
numclwwlk7lem |
|
9 |
3 7 8
|
syl2anc |
|
10 |
|
2z |
|
11 |
10
|
a1i |
|
12 |
|
nn0z |
|
13 |
12
|
adantr |
|
14 |
|
peano2zm |
|
15 |
13 14
|
syl |
|
16 |
|
zltlem1 |
|
17 |
10 12 16
|
sylancr |
|
18 |
17
|
biimpa |
|
19 |
|
eluz2 |
|
20 |
11 15 18 19
|
syl3anbrc |
|
21 |
|
exprmfct |
|
22 |
20 21
|
syl |
|
23 |
5
|
anim1ci |
|
24 |
1
|
finrusgrfusgr |
|
25 |
23 24
|
syl |
|
26 |
25
|
3ad2ant3 |
|
27 |
|
simp1l |
|
28 |
|
numclwwlk8 |
|
29 |
26 27 28
|
syl2anc |
|
30 |
3
|
3ad2ant3 |
|
31 |
|
pm3.22 |
|
32 |
31
|
3adant1 |
|
33 |
32
|
adantr |
|
34 |
33
|
3ad2ant3 |
|
35 |
|
simp1 |
|
36 |
1
|
numclwwlk7 |
|
37 |
30 34 35 36
|
syl3anc |
|
38 |
|
eqeq1 |
|
39 |
|
ax-1ne0 |
|
40 |
39
|
nesymi |
|
41 |
40
|
pm2.21i |
|
42 |
38 41
|
syl6bi |
|
43 |
29 37 42
|
sylc |
|
44 |
43
|
a1d |
|
45 |
44
|
3exp |
|
46 |
45
|
rexlimiva |
|
47 |
22 46
|
mpcom |
|
48 |
47
|
expcom |
|
49 |
48
|
com23 |
|
50 |
|
1red |
|
51 |
|
nn0re |
|
52 |
50 51
|
ltnled |
|
53 |
|
1e2m1 |
|
54 |
53
|
a1i |
|
55 |
54
|
breq2d |
|
56 |
55
|
notbid |
|
57 |
|
zltlem1 |
|
58 |
12 10 57
|
sylancl |
|
59 |
58
|
bicomd |
|
60 |
59
|
notbid |
|
61 |
52 56 60
|
3bitrd |
|
62 |
|
2re |
|
63 |
|
lttri3 |
|
64 |
63
|
biimprd |
|
65 |
51 62 64
|
sylancl |
|
66 |
65
|
expd |
|
67 |
61 66
|
sylbid |
|
68 |
67
|
com3r |
|
69 |
68
|
a1d |
|
70 |
49 69
|
pm2.61i |
|
71 |
9 70
|
mpd |
|
72 |
71
|
expimpd |
|