Metamath Proof Explorer


Theorem frgrreggt1

Description: If a finite nonempty friendship graph is K-regular with K > 1 , then K must be 2 . (Contributed by Alexander van der Vekens, 7-Oct-2018) (Revised by AV, 3-Jun-2021)

Ref Expression
Hypothesis frgrreggt1.v V = Vtx G
Assertion frgrreggt1 G FriendGraph V Fin V G RegUSGraph K 1 < K K = 2

Proof

Step Hyp Ref Expression
1 frgrreggt1.v V = Vtx G
2 simp1 G FriendGraph V Fin V G FriendGraph
3 2 anim1ci G FriendGraph V Fin V G RegUSGraph K G RegUSGraph K G FriendGraph
4 simp3 G FriendGraph V Fin V V
5 simp2 G FriendGraph V Fin V V Fin
6 4 5 jca G FriendGraph V Fin V V V Fin
7 6 adantr G FriendGraph V Fin V G RegUSGraph K V V Fin
8 1 numclwwlk7lem G RegUSGraph K G FriendGraph V V Fin K 0
9 3 7 8 syl2anc G FriendGraph V Fin V G RegUSGraph K K 0
10 2z 2
11 10 a1i K 0 2 < K 2
12 nn0z K 0 K
13 12 adantr K 0 2 < K K
14 peano2zm K K 1
15 13 14 syl K 0 2 < K K 1
16 zltlem1 2 K 2 < K 2 K 1
17 10 12 16 sylancr K 0 2 < K 2 K 1
18 17 biimpa K 0 2 < K 2 K 1
19 eluz2 K 1 2 2 K 1 2 K 1
20 11 15 18 19 syl3anbrc K 0 2 < K K 1 2
21 exprmfct K 1 2 p p K 1
22 20 21 syl K 0 2 < K p p K 1
23 5 anim1ci G FriendGraph V Fin V G RegUSGraph K G RegUSGraph K V Fin
24 1 finrusgrfusgr G RegUSGraph K V Fin G FinUSGraph
25 23 24 syl G FriendGraph V Fin V G RegUSGraph K G FinUSGraph
26 25 3ad2ant3 p p K 1 K 0 2 < K G FriendGraph V Fin V G RegUSGraph K G FinUSGraph
27 simp1l p p K 1 K 0 2 < K G FriendGraph V Fin V G RegUSGraph K p
28 numclwwlk8 G FinUSGraph p p ClWWalksN G mod p = 0
29 26 27 28 syl2anc p p K 1 K 0 2 < K G FriendGraph V Fin V G RegUSGraph K p ClWWalksN G mod p = 0
30 3 3ad2ant3 p p K 1 K 0 2 < K G FriendGraph V Fin V G RegUSGraph K G RegUSGraph K G FriendGraph
31 pm3.22 V Fin V V V Fin
32 31 3adant1 G FriendGraph V Fin V V V Fin
33 32 adantr G FriendGraph V Fin V G RegUSGraph K V V Fin
34 33 3ad2ant3 p p K 1 K 0 2 < K G FriendGraph V Fin V G RegUSGraph K V V Fin
35 simp1 p p K 1 K 0 2 < K G FriendGraph V Fin V G RegUSGraph K p p K 1
36 1 numclwwlk7 G RegUSGraph K G FriendGraph V V Fin p p K 1 p ClWWalksN G mod p = 1
37 30 34 35 36 syl3anc p p K 1 K 0 2 < K G FriendGraph V Fin V G RegUSGraph K p ClWWalksN G mod p = 1
38 eqeq1 p ClWWalksN G mod p = 0 p ClWWalksN G mod p = 1 0 = 1
39 ax-1ne0 1 0
40 39 nesymi ¬ 0 = 1
41 40 pm2.21i 0 = 1 K = 2
42 38 41 syl6bi p ClWWalksN G mod p = 0 p ClWWalksN G mod p = 1 K = 2
43 29 37 42 sylc p p K 1 K 0 2 < K G FriendGraph V Fin V G RegUSGraph K K = 2
44 43 a1d p p K 1 K 0 2 < K G FriendGraph V Fin V G RegUSGraph K 1 < K K = 2
45 44 3exp p p K 1 K 0 2 < K G FriendGraph V Fin V G RegUSGraph K 1 < K K = 2
46 45 rexlimiva p p K 1 K 0 2 < K G FriendGraph V Fin V G RegUSGraph K 1 < K K = 2
47 22 46 mpcom K 0 2 < K G FriendGraph V Fin V G RegUSGraph K 1 < K K = 2
48 47 expcom 2 < K K 0 G FriendGraph V Fin V G RegUSGraph K 1 < K K = 2
49 48 com23 2 < K G FriendGraph V Fin V G RegUSGraph K K 0 1 < K K = 2
50 1red K 0 1
51 nn0re K 0 K
52 50 51 ltnled K 0 1 < K ¬ K 1
53 1e2m1 1 = 2 1
54 53 a1i K 0 1 = 2 1
55 54 breq2d K 0 K 1 K 2 1
56 55 notbid K 0 ¬ K 1 ¬ K 2 1
57 zltlem1 K 2 K < 2 K 2 1
58 12 10 57 sylancl K 0 K < 2 K 2 1
59 58 bicomd K 0 K 2 1 K < 2
60 59 notbid K 0 ¬ K 2 1 ¬ K < 2
61 52 56 60 3bitrd K 0 1 < K ¬ K < 2
62 2re 2
63 lttri3 K 2 K = 2 ¬ K < 2 ¬ 2 < K
64 63 biimprd K 2 ¬ K < 2 ¬ 2 < K K = 2
65 51 62 64 sylancl K 0 ¬ K < 2 ¬ 2 < K K = 2
66 65 expd K 0 ¬ K < 2 ¬ 2 < K K = 2
67 61 66 sylbid K 0 1 < K ¬ 2 < K K = 2
68 67 com3r ¬ 2 < K K 0 1 < K K = 2
69 68 a1d ¬ 2 < K G FriendGraph V Fin V G RegUSGraph K K 0 1 < K K = 2
70 49 69 pm2.61i G FriendGraph V Fin V G RegUSGraph K K 0 1 < K K = 2
71 9 70 mpd G FriendGraph V Fin V G RegUSGraph K 1 < K K = 2
72 71 expimpd G FriendGraph V Fin V G RegUSGraph K 1 < K K = 2