Metamath Proof Explorer


Theorem frgrregord013

Description: If a finite friendship graph is K-regular, then it must have order 0, 1 or 3. (Contributed by Alexander van der Vekens, 9-Oct-2018) (Revised by AV, 4-Jun-2021)

Ref Expression
Hypothesis frgrreggt1.v V = Vtx G
Assertion frgrregord013 G FriendGraph V Fin G RegUSGraph K V = 0 V = 1 V = 3

Proof

Step Hyp Ref Expression
1 frgrreggt1.v V = Vtx G
2 hashcl V Fin V 0
3 ax-1 V = 0 V = 1 V = 3 V 0 V Fin G FriendGraph G RegUSGraph K V = 0 V = 1 V = 3
4 3ioran ¬ V = 0 V = 1 V = 3 ¬ V = 0 ¬ V = 1 ¬ V = 3
5 df-ne V 0 ¬ V = 0
6 hasheq0 V Fin V = 0 V =
7 6 necon3bid V Fin V 0 V
8 7 biimpa V Fin V 0 V
9 elnnne0 V V 0 V 0
10 df-ne V 1 ¬ V = 1
11 eluz2b3 V 2 V V 1
12 hash2prde V Fin V = 2 a b a b V = a b
13 vex a V
14 13 a1i a b a V
15 vex b V
16 15 a1i a b b V
17 id a b a b
18 14 16 17 3jca a b a V b V a b
19 1 eqeq1i V = a b Vtx G = a b
20 19 biimpi V = a b Vtx G = a b
21 nfrgr2v a V b V a b Vtx G = a b G FriendGraph
22 18 20 21 syl2an a b V = a b G FriendGraph
23 df-nel G FriendGraph ¬ G FriendGraph
24 22 23 sylib a b V = a b ¬ G FriendGraph
25 24 pm2.21d a b V = a b G FriendGraph V ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
26 25 com23 a b V = a b V G FriendGraph ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
27 26 exlimivv a b a b V = a b V G FriendGraph ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
28 12 27 syl V Fin V = 2 V G FriendGraph ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
29 28 ex V Fin V = 2 V G FriendGraph ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
30 29 com23 V Fin V V = 2 G FriendGraph ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
31 30 com14 G FriendGraph V V = 2 V Fin ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
32 31 a1i V 2 G FriendGraph V V = 2 V Fin ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
33 32 3imp V 2 G FriendGraph V V = 2 V Fin ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
34 33 com12 V = 2 V 2 G FriendGraph V V Fin ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
35 eqid VtxDeg G = VtxDeg G
36 1 35 rusgrprop0 G RegUSGraph K G USGraph K 0 * v V VtxDeg G v = K
37 eluz2gt1 V 2 1 < V
38 37 anim1ci V 2 G FriendGraph G FriendGraph 1 < V
39 1 vdgn0frgrv2 G FriendGraph v V 1 < V VtxDeg G v 0
40 39 impancom G FriendGraph 1 < V v V VtxDeg G v 0
41 40 ralrimiv G FriendGraph 1 < V v V VtxDeg G v 0
42 eqeq2 K = 0 VtxDeg G v = K VtxDeg G v = 0
43 42 ralbidv K = 0 v V VtxDeg G v = K v V VtxDeg G v = 0
44 r19.26 v V VtxDeg G v = 0 VtxDeg G v 0 v V VtxDeg G v = 0 v V VtxDeg G v 0
45 nne ¬ VtxDeg G v 0 VtxDeg G v = 0
46 45 bicomi VtxDeg G v = 0 ¬ VtxDeg G v 0
47 46 anbi1i VtxDeg G v = 0 VtxDeg G v 0 ¬ VtxDeg G v 0 VtxDeg G v 0
48 ancom ¬ VtxDeg G v 0 VtxDeg G v 0 VtxDeg G v 0 ¬ VtxDeg G v 0
49 pm3.24 ¬ VtxDeg G v 0 ¬ VtxDeg G v 0
50 49 bifal VtxDeg G v 0 ¬ VtxDeg G v 0
51 47 48 50 3bitri VtxDeg G v = 0 VtxDeg G v 0
52 51 ralbii v V VtxDeg G v = 0 VtxDeg G v 0 v V
53 r19.3rzv V v V
54 falim V = 0 V = 1 V = 3
55 53 54 syl6bir V v V V = 0 V = 1 V = 3
56 55 adantl V Fin V v V V = 0 V = 1 V = 3
57 56 com12 v V V Fin V V = 0 V = 1 V = 3
58 52 57 sylbi v V VtxDeg G v = 0 VtxDeg G v 0 V Fin V V = 0 V = 1 V = 3
59 44 58 sylbir v V VtxDeg G v = 0 v V VtxDeg G v 0 V Fin V V = 0 V = 1 V = 3
60 59 ex v V VtxDeg G v = 0 v V VtxDeg G v 0 V Fin V V = 0 V = 1 V = 3
61 43 60 syl6bi K = 0 v V VtxDeg G v = K v V VtxDeg G v 0 V Fin V V = 0 V = 1 V = 3
62 61 com4t v V VtxDeg G v 0 V Fin V K = 0 v V VtxDeg G v = K V = 0 V = 1 V = 3
63 38 41 62 3syl V 2 G FriendGraph V Fin V K = 0 v V VtxDeg G v = K V = 0 V = 1 V = 3
64 63 ex V 2 G FriendGraph V Fin V K = 0 v V VtxDeg G v = K V = 0 V = 1 V = 3
65 64 com25 V 2 v V VtxDeg G v = K V Fin V K = 0 G FriendGraph V = 0 V = 1 V = 3
66 65 adantl ¬ V = 3 ¬ V = 2 V 2 v V VtxDeg G v = K V Fin V K = 0 G FriendGraph V = 0 V = 1 V = 3
67 66 com15 G FriendGraph v V VtxDeg G v = K V Fin V K = 0 ¬ V = 3 ¬ V = 2 V 2 V = 0 V = 1 V = 3
68 67 com12 v V VtxDeg G v = K G FriendGraph V Fin V K = 0 ¬ V = 3 ¬ V = 2 V 2 V = 0 V = 1 V = 3
69 68 3ad2ant3 G USGraph K 0 * v V VtxDeg G v = K G FriendGraph V Fin V K = 0 ¬ V = 3 ¬ V = 2 V 2 V = 0 V = 1 V = 3
70 36 69 syl G RegUSGraph K G FriendGraph V Fin V K = 0 ¬ V = 3 ¬ V = 2 V 2 V = 0 V = 1 V = 3
71 70 impcom G FriendGraph G RegUSGraph K V Fin V K = 0 ¬ V = 3 ¬ V = 2 V 2 V = 0 V = 1 V = 3
72 71 impcom V Fin V G FriendGraph G RegUSGraph K K = 0 ¬ V = 3 ¬ V = 2 V 2 V = 0 V = 1 V = 3
73 1 frrusgrord V Fin V G FriendGraph G RegUSGraph K V = K K 1 + 1
74 73 imp V Fin V G FriendGraph G RegUSGraph K V = K K 1 + 1
75 id K = 2 K = 2
76 oveq1 K = 2 K 1 = 2 1
77 75 76 oveq12d K = 2 K K 1 = 2 2 1
78 77 oveq1d K = 2 K K 1 + 1 = 2 2 1 + 1
79 2m1e1 2 1 = 1
80 79 oveq2i 2 2 1 = 2 1
81 2t1e2 2 1 = 2
82 80 81 eqtri 2 2 1 = 2
83 82 oveq1i 2 2 1 + 1 = 2 + 1
84 2p1e3 2 + 1 = 3
85 83 84 eqtri 2 2 1 + 1 = 3
86 78 85 eqtrdi K = 2 K K 1 + 1 = 3
87 86 eqeq2d K = 2 V = K K 1 + 1 V = 3
88 pm2.21 ¬ V = 3 V = 3 V = 0 V = 1 V = 3
89 88 ad2antrr ¬ V = 3 ¬ V = 2 V 2 V = 3 V = 0 V = 1 V = 3
90 89 com12 V = 3 ¬ V = 3 ¬ V = 2 V 2 V = 0 V = 1 V = 3
91 87 90 syl6bi K = 2 V = K K 1 + 1 ¬ V = 3 ¬ V = 2 V 2 V = 0 V = 1 V = 3
92 74 91 syl5com V Fin V G FriendGraph G RegUSGraph K K = 2 ¬ V = 3 ¬ V = 2 V 2 V = 0 V = 1 V = 3
93 1 frgrreg V Fin V G FriendGraph G RegUSGraph K K = 0 K = 2
94 93 imp V Fin V G FriendGraph G RegUSGraph K K = 0 K = 2
95 72 92 94 mpjaod V Fin V G FriendGraph G RegUSGraph K ¬ V = 3 ¬ V = 2 V 2 V = 0 V = 1 V = 3
96 95 exp32 V Fin V G FriendGraph G RegUSGraph K ¬ V = 3 ¬ V = 2 V 2 V = 0 V = 1 V = 3
97 96 com34 V Fin V G FriendGraph ¬ V = 3 ¬ V = 2 V 2 G RegUSGraph K V = 0 V = 1 V = 3
98 97 com23 V Fin V ¬ V = 3 ¬ V = 2 V 2 G FriendGraph G RegUSGraph K V = 0 V = 1 V = 3
99 98 exp4c V Fin V ¬ V = 3 ¬ V = 2 V 2 G FriendGraph G RegUSGraph K V = 0 V = 1 V = 3
100 99 com34 V Fin V ¬ V = 3 V 2 ¬ V = 2 G FriendGraph G RegUSGraph K V = 0 V = 1 V = 3
101 100 com25 V Fin V G FriendGraph V 2 ¬ V = 2 ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
102 101 ex V Fin V G FriendGraph V 2 ¬ V = 2 ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
103 102 com23 V Fin G FriendGraph V V 2 ¬ V = 2 ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
104 103 com14 V 2 G FriendGraph V V Fin ¬ V = 2 ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
105 104 3imp V 2 G FriendGraph V V Fin ¬ V = 2 ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
106 105 com3r ¬ V = 2 V 2 G FriendGraph V V Fin ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
107 34 106 pm2.61i V 2 G FriendGraph V V Fin ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
108 107 3exp V 2 G FriendGraph V V Fin ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
109 11 108 sylbir V V 1 G FriendGraph V V Fin ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
110 109 ex V V 1 G FriendGraph V V Fin ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
111 10 110 syl5bir V ¬ V = 1 G FriendGraph V V Fin ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
112 111 com25 V V Fin G FriendGraph V ¬ V = 1 ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
113 9 112 sylbir V 0 V 0 V Fin G FriendGraph V ¬ V = 1 ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
114 113 ex V 0 V 0 V Fin G FriendGraph V ¬ V = 1 ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
115 114 impcomd V 0 V Fin V 0 G FriendGraph V ¬ V = 1 ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
116 115 com14 V V Fin V 0 G FriendGraph V 0 ¬ V = 1 ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
117 8 116 mpcom V Fin V 0 G FriendGraph V 0 ¬ V = 1 ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
118 117 ex V Fin V 0 G FriendGraph V 0 ¬ V = 1 ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
119 118 com14 V 0 V 0 G FriendGraph V Fin ¬ V = 1 ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
120 5 119 syl5bir V 0 ¬ V = 0 G FriendGraph V Fin ¬ V = 1 ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
121 120 com24 V 0 V Fin G FriendGraph ¬ V = 0 ¬ V = 1 ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
122 121 3imp V 0 V Fin G FriendGraph ¬ V = 0 ¬ V = 1 ¬ V = 3 G RegUSGraph K V = 0 V = 1 V = 3
123 122 com25 V 0 V Fin G FriendGraph G RegUSGraph K ¬ V = 1 ¬ V = 3 ¬ V = 0 V = 0 V = 1 V = 3
124 123 imp V 0 V Fin G FriendGraph G RegUSGraph K ¬ V = 1 ¬ V = 3 ¬ V = 0 V = 0 V = 1 V = 3
125 124 com14 ¬ V = 0 ¬ V = 1 ¬ V = 3 V 0 V Fin G FriendGraph G RegUSGraph K V = 0 V = 1 V = 3
126 125 3imp ¬ V = 0 ¬ V = 1 ¬ V = 3 V 0 V Fin G FriendGraph G RegUSGraph K V = 0 V = 1 V = 3
127 4 126 sylbi ¬ V = 0 V = 1 V = 3 V 0 V Fin G FriendGraph G RegUSGraph K V = 0 V = 1 V = 3
128 3 127 pm2.61i V 0 V Fin G FriendGraph G RegUSGraph K V = 0 V = 1 V = 3
129 128 3exp1 V 0 V Fin G FriendGraph G RegUSGraph K V = 0 V = 1 V = 3
130 2 129 mpcom V Fin G FriendGraph G RegUSGraph K V = 0 V = 1 V = 3
131 130 3imp21 G FriendGraph V Fin G RegUSGraph K V = 0 V = 1 V = 3