Metamath Proof Explorer


Theorem frgrregord13

Description: If a nonempty finite friendship graph is K-regular, then it must have order 1 or 3. Special case of frgrregord013 . (Contributed by Alexander van der Vekens, 9-Oct-2018) (Revised by AV, 4-Jun-2021)

Ref Expression
Hypothesis frgrreggt1.v V = Vtx G
Assertion frgrregord13 G FriendGraph V Fin V G RegUSGraph K V = 1 V = 3

Proof

Step Hyp Ref Expression
1 frgrreggt1.v V = Vtx G
2 simpl1 G FriendGraph V Fin V G RegUSGraph K G FriendGraph
3 simpl2 G FriendGraph V Fin V G RegUSGraph K V Fin
4 simpr G FriendGraph V Fin V G RegUSGraph K G RegUSGraph K
5 1 frgrregord013 G FriendGraph V Fin G RegUSGraph K V = 0 V = 1 V = 3
6 2 3 4 5 syl3anc G FriendGraph V Fin V G RegUSGraph K V = 0 V = 1 V = 3
7 hasheq0 V Fin V = 0 V =
8 eqneqall V = V V = 1 V = 3
9 7 8 syl6bi V Fin V = 0 V V = 1 V = 3
10 9 com23 V Fin V V = 0 V = 1 V = 3
11 10 a1i G FriendGraph V Fin V V = 0 V = 1 V = 3
12 11 3imp G FriendGraph V Fin V V = 0 V = 1 V = 3
13 12 adantr G FriendGraph V Fin V G RegUSGraph K V = 0 V = 1 V = 3
14 13 com12 V = 0 G FriendGraph V Fin V G RegUSGraph K V = 1 V = 3
15 orc V = 1 V = 1 V = 3
16 15 a1d V = 1 G FriendGraph V Fin V G RegUSGraph K V = 1 V = 3
17 olc V = 3 V = 1 V = 3
18 17 a1d V = 3 G FriendGraph V Fin V G RegUSGraph K V = 1 V = 3
19 14 16 18 3jaoi V = 0 V = 1 V = 3 G FriendGraph V Fin V G RegUSGraph K V = 1 V = 3
20 6 19 mpcom G FriendGraph V Fin V G RegUSGraph K V = 1 V = 3