Metamath Proof Explorer


Theorem frgrregorufr

Description: If there is a vertex having degree K for each (nonnegative integer) K in a friendship graph, then either all vertices have degree K or there is a universal friend. This corresponds to claim 2 in Huneke p. 2: "Suppose there is a vertex of degree k > 1. ... all vertices have degree k, unless there is a universal friend. ... It follows that G is k-regular, i.e., the degree of every vertex is k". (Contributed by Alexander van der Vekens, 1-Jan-2018)

Ref Expression
Hypotheses frgrregorufr0.v V = Vtx G
frgrregorufr0.e E = Edg G
frgrregorufr0.d D = VtxDeg G
Assertion frgrregorufr G FriendGraph a V D a = K v V D v = K v V w V v v w E

Proof

Step Hyp Ref Expression
1 frgrregorufr0.v V = Vtx G
2 frgrregorufr0.e E = Edg G
3 frgrregorufr0.d D = VtxDeg G
4 1 2 3 frgrregorufr0 G FriendGraph v V D v = K v V D v K v V w V v v w E
5 orc v V D v = K v V D v = K v V w V v v w E
6 5 a1d v V D v = K a V D a = K v V D v = K v V w V v v w E
7 fveq2 v = a D v = D a
8 7 neeq1d v = a D v K D a K
9 8 rspcva a V v V D v K D a K
10 df-ne D a K ¬ D a = K
11 pm2.21 ¬ D a = K D a = K v V D v = K v V w V v v w E
12 10 11 sylbi D a K D a = K v V D v = K v V w V v v w E
13 9 12 syl a V v V D v K D a = K v V D v = K v V w V v v w E
14 13 ancoms v V D v K a V D a = K v V D v = K v V w V v v w E
15 14 rexlimdva v V D v K a V D a = K v V D v = K v V w V v v w E
16 olc v V w V v v w E v V D v = K v V w V v v w E
17 16 a1d v V w V v v w E a V D a = K v V D v = K v V w V v v w E
18 6 15 17 3jaoi v V D v = K v V D v K v V w V v v w E a V D a = K v V D v = K v V w V v v w E
19 4 18 syl G FriendGraph a V D a = K v V D v = K v V w V v v w E