Metamath Proof Explorer


Theorem frgrregorufr0

Description: In a friendship graph there are either no vertices having degree K , or all vertices have degree K for any (nonnegative integer) K , unless there is a universal friend. This corresponds to claim 2 in Huneke p. 2: "... all vertices have degree k, unless there is a universal friend." (Contributed by Alexander van der Vekens, 1-Jan-2018) (Revised by AV, 11-May-2021) (Proof shortened by AV, 3-Jan-2022)

Ref Expression
Hypotheses frgrregorufr0.v V = Vtx G
frgrregorufr0.e E = Edg G
frgrregorufr0.d D = VtxDeg G
Assertion frgrregorufr0 G FriendGraph v V D v = K v V D v K v V w V v v w E

Proof

Step Hyp Ref Expression
1 frgrregorufr0.v V = Vtx G
2 frgrregorufr0.e E = Edg G
3 frgrregorufr0.d D = VtxDeg G
4 fveqeq2 x = y D x = K D y = K
5 4 cbvrabv x V | D x = K = y V | D y = K
6 eqid V x V | D x = K = V x V | D x = K
7 1 3 5 6 frgrwopreg G FriendGraph x V | D x = K = 1 x V | D x = K = V x V | D x = K = 1 V x V | D x = K =
8 1 3 5 6 2 frgrwopreg1 G FriendGraph x V | D x = K = 1 v V w V v v w E
9 8 3mix3d G FriendGraph x V | D x = K = 1 v V D v = K v V D v K v V w V v v w E
10 9 expcom x V | D x = K = 1 G FriendGraph v V D v = K v V D v K v V w V v v w E
11 fveqeq2 x = v D x = K D v = K
12 11 cbvrabv x V | D x = K = v V | D v = K
13 12 eqeq1i x V | D x = K = v V | D v = K =
14 rabeq0 v V | D v = K = v V ¬ D v = K
15 13 14 bitri x V | D x = K = v V ¬ D v = K
16 neqne ¬ D v = K D v K
17 16 ralimi v V ¬ D v = K v V D v K
18 17 3mix2d v V ¬ D v = K v V D v = K v V D v K v V w V v v w E
19 18 a1d v V ¬ D v = K G FriendGraph v V D v = K v V D v K v V w V v v w E
20 15 19 sylbi x V | D x = K = G FriendGraph v V D v = K v V D v K v V w V v v w E
21 10 20 jaoi x V | D x = K = 1 x V | D x = K = G FriendGraph v V D v = K v V D v K v V w V v v w E
22 1 3 5 6 2 frgrwopreg2 G FriendGraph V x V | D x = K = 1 v V w V v v w E
23 22 3mix3d G FriendGraph V x V | D x = K = 1 v V D v = K v V D v K v V w V v v w E
24 23 expcom V x V | D x = K = 1 G FriendGraph v V D v = K v V D v K v V w V v v w E
25 difrab0eq V x V | D x = K = V = x V | D x = K
26 12 eqeq2i V = x V | D x = K V = v V | D v = K
27 rabid2 V = v V | D v = K v V D v = K
28 26 27 bitri V = x V | D x = K v V D v = K
29 3mix1 v V D v = K v V D v = K v V D v K v V w V v v w E
30 29 a1d v V D v = K G FriendGraph v V D v = K v V D v K v V w V v v w E
31 28 30 sylbi V = x V | D x = K G FriendGraph v V D v = K v V D v K v V w V v v w E
32 25 31 sylbi V x V | D x = K = G FriendGraph v V D v = K v V D v K v V w V v v w E
33 24 32 jaoi V x V | D x = K = 1 V x V | D x = K = G FriendGraph v V D v = K v V D v K v V w V v v w E
34 21 33 jaoi x V | D x = K = 1 x V | D x = K = V x V | D x = K = 1 V x V | D x = K = G FriendGraph v V D v = K v V D v K v V w V v v w E
35 7 34 mpcom G FriendGraph v V D v = K v V D v K v V w V v v w E