Metamath Proof Explorer


Theorem frgrwopreg

Description: In a friendship graph there are either no vertices ( A = (/) ) or exactly one vertex ( ( #A ) = 1 ) having degree K , or all ( B = (/) ) or all except one vertices ( ( #B ) = 1 ) have degree K . (Contributed by Alexander van der Vekens, 31-Dec-2017) (Revised by AV, 10-May-2021) (Proof shortened by AV, 3-Jan-2022)

Ref Expression
Hypotheses frgrwopreg.v V = Vtx G
frgrwopreg.d D = VtxDeg G
frgrwopreg.a A = x V | D x = K
frgrwopreg.b B = V A
Assertion frgrwopreg G FriendGraph A = 1 A = B = 1 B =

Proof

Step Hyp Ref Expression
1 frgrwopreg.v V = Vtx G
2 frgrwopreg.d D = VtxDeg G
3 frgrwopreg.a A = x V | D x = K
4 frgrwopreg.b B = V A
5 1 2 3 4 frgrwopreglem1 A V B V
6 hashv01gt1 A V A = 0 A = 1 1 < A
7 hasheq0 A V A = 0 A =
8 biidd A V A = 1 A = 1
9 biidd A V 1 < A 1 < A
10 7 8 9 3orbi123d A V A = 0 A = 1 1 < A A = A = 1 1 < A
11 hashv01gt1 B V B = 0 B = 1 1 < B
12 hasheq0 B V B = 0 B =
13 biidd B V B = 1 B = 1
14 biidd B V 1 < B 1 < B
15 12 13 14 3orbi123d B V B = 0 B = 1 1 < B B = B = 1 1 < B
16 olc B = B = 1 B =
17 16 olcd B = A = 1 A = B = 1 B =
18 17 2a1d B = A = A = 1 1 < A G FriendGraph A = 1 A = B = 1 B =
19 orc B = 1 B = 1 B =
20 19 olcd B = 1 A = 1 A = B = 1 B =
21 20 2a1d B = 1 A = A = 1 1 < A G FriendGraph A = 1 A = B = 1 B =
22 olc A = A = 1 A =
23 22 orcd A = A = 1 A = B = 1 B =
24 23 2a1d A = 1 < B G FriendGraph A = 1 A = B = 1 B =
25 orc A = 1 A = 1 A =
26 25 orcd A = 1 A = 1 A = B = 1 B =
27 26 2a1d A = 1 1 < B G FriendGraph A = 1 A = B = 1 B =
28 eqid Edg G = Edg G
29 1 2 3 4 28 frgrwopreglem5 G FriendGraph 1 < A 1 < B a A x A b B y B a x b y a b Edg G b x Edg G x y Edg G y a Edg G
30 frgrusgr G FriendGraph G USGraph
31 simplll G USGraph a A x A b B y B a x b y G USGraph
32 elrabi a x V | D x = K a V
33 32 3 eleq2s a A a V
34 33 adantr a A x A a V
35 34 ad3antlr G USGraph a A x A b B y B a x b y a V
36 rabidim1 x x V | D x = K x V
37 36 3 eleq2s x A x V
38 37 adantl a A x A x V
39 38 ad3antlr G USGraph a A x A b B y B a x b y x V
40 simprl G USGraph a A x A b B y B a x b y a x
41 eldifi b V A b V
42 41 4 eleq2s b B b V
43 42 adantr b B y B b V
44 43 ad2antlr G USGraph a A x A b B y B a x b y b V
45 eldifi y V A y V
46 45 4 eleq2s y B y V
47 46 adantl b B y B y V
48 47 ad2antlr G USGraph a A x A b B y B a x b y y V
49 simprr G USGraph a A x A b B y B a x b y b y
50 1 28 4cyclusnfrgr G USGraph a V x V a x b V y V b y a b Edg G b x Edg G x y Edg G y a Edg G G FriendGraph
51 31 35 39 40 44 48 49 50 syl133anc G USGraph a A x A b B y B a x b y a b Edg G b x Edg G x y Edg G y a Edg G G FriendGraph
52 51 exp4b G USGraph a A x A b B y B a x b y a b Edg G b x Edg G x y Edg G y a Edg G G FriendGraph
53 52 3impd G USGraph a A x A b B y B a x b y a b Edg G b x Edg G x y Edg G y a Edg G G FriendGraph
54 df-nel G FriendGraph ¬ G FriendGraph
55 pm2.21 ¬ G FriendGraph G FriendGraph A = 1 A = B = 1 B =
56 54 55 sylbi G FriendGraph G FriendGraph A = 1 A = B = 1 B =
57 53 56 syl6 G USGraph a A x A b B y B a x b y a b Edg G b x Edg G x y Edg G y a Edg G G FriendGraph A = 1 A = B = 1 B =
58 57 rexlimdvva G USGraph a A x A b B y B a x b y a b Edg G b x Edg G x y Edg G y a Edg G G FriendGraph A = 1 A = B = 1 B =
59 58 rexlimdvva G USGraph a A x A b B y B a x b y a b Edg G b x Edg G x y Edg G y a Edg G G FriendGraph A = 1 A = B = 1 B =
60 59 com23 G USGraph G FriendGraph a A x A b B y B a x b y a b Edg G b x Edg G x y Edg G y a Edg G A = 1 A = B = 1 B =
61 30 60 mpcom G FriendGraph a A x A b B y B a x b y a b Edg G b x Edg G x y Edg G y a Edg G A = 1 A = B = 1 B =
62 61 3ad2ant1 G FriendGraph 1 < A 1 < B a A x A b B y B a x b y a b Edg G b x Edg G x y Edg G y a Edg G A = 1 A = B = 1 B =
63 29 62 mpd G FriendGraph 1 < A 1 < B A = 1 A = B = 1 B =
64 63 3exp G FriendGraph 1 < A 1 < B A = 1 A = B = 1 B =
65 64 com3l 1 < A 1 < B G FriendGraph A = 1 A = B = 1 B =
66 24 27 65 3jaoi A = A = 1 1 < A 1 < B G FriendGraph A = 1 A = B = 1 B =
67 66 com12 1 < B A = A = 1 1 < A G FriendGraph A = 1 A = B = 1 B =
68 18 21 67 3jaoi B = B = 1 1 < B A = A = 1 1 < A G FriendGraph A = 1 A = B = 1 B =
69 15 68 syl6bi B V B = 0 B = 1 1 < B A = A = 1 1 < A G FriendGraph A = 1 A = B = 1 B =
70 11 69 mpd B V A = A = 1 1 < A G FriendGraph A = 1 A = B = 1 B =
71 70 com12 A = A = 1 1 < A B V G FriendGraph A = 1 A = B = 1 B =
72 10 71 syl6bi A V A = 0 A = 1 1 < A B V G FriendGraph A = 1 A = B = 1 B =
73 6 72 mpd A V B V G FriendGraph A = 1 A = B = 1 B =
74 73 imp A V B V G FriendGraph A = 1 A = B = 1 B =
75 5 74 ax-mp G FriendGraph A = 1 A = B = 1 B =