| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frgrwopreg.v |
|
| 2 |
|
frgrwopreg.d |
|
| 3 |
|
frgrwopreg.a |
|
| 4 |
|
frgrwopreg.b |
|
| 5 |
1 2 3 4
|
frgrwopreglem1 |
|
| 6 |
|
hashv01gt1 |
|
| 7 |
|
hasheq0 |
|
| 8 |
|
biidd |
|
| 9 |
|
biidd |
|
| 10 |
7 8 9
|
3orbi123d |
|
| 11 |
|
hashv01gt1 |
|
| 12 |
|
hasheq0 |
|
| 13 |
|
biidd |
|
| 14 |
|
biidd |
|
| 15 |
12 13 14
|
3orbi123d |
|
| 16 |
|
olc |
|
| 17 |
16
|
olcd |
|
| 18 |
17
|
2a1d |
|
| 19 |
|
orc |
|
| 20 |
19
|
olcd |
|
| 21 |
20
|
2a1d |
|
| 22 |
|
olc |
|
| 23 |
22
|
orcd |
|
| 24 |
23
|
2a1d |
|
| 25 |
|
orc |
|
| 26 |
25
|
orcd |
|
| 27 |
26
|
2a1d |
|
| 28 |
|
eqid |
|
| 29 |
1 2 3 4 28
|
frgrwopreglem5 |
|
| 30 |
|
frgrusgr |
|
| 31 |
|
simplll |
|
| 32 |
|
elrabi |
|
| 33 |
32 3
|
eleq2s |
|
| 34 |
33
|
adantr |
|
| 35 |
34
|
ad3antlr |
|
| 36 |
|
rabidim1 |
|
| 37 |
36 3
|
eleq2s |
|
| 38 |
37
|
adantl |
|
| 39 |
38
|
ad3antlr |
|
| 40 |
|
simprl |
|
| 41 |
|
eldifi |
|
| 42 |
41 4
|
eleq2s |
|
| 43 |
42
|
adantr |
|
| 44 |
43
|
ad2antlr |
|
| 45 |
|
eldifi |
|
| 46 |
45 4
|
eleq2s |
|
| 47 |
46
|
adantl |
|
| 48 |
47
|
ad2antlr |
|
| 49 |
|
simprr |
|
| 50 |
1 28
|
4cyclusnfrgr |
|
| 51 |
31 35 39 40 44 48 49 50
|
syl133anc |
|
| 52 |
51
|
exp4b |
|
| 53 |
52
|
3impd |
|
| 54 |
|
df-nel |
|
| 55 |
|
pm2.21 |
|
| 56 |
54 55
|
sylbi |
|
| 57 |
53 56
|
syl6 |
|
| 58 |
57
|
rexlimdvva |
|
| 59 |
58
|
rexlimdvva |
|
| 60 |
59
|
com23 |
|
| 61 |
30 60
|
mpcom |
|
| 62 |
61
|
3ad2ant1 |
|
| 63 |
29 62
|
mpd |
|
| 64 |
63
|
3exp |
|
| 65 |
64
|
com3l |
|
| 66 |
24 27 65
|
3jaoi |
|
| 67 |
66
|
com12 |
|
| 68 |
18 21 67
|
3jaoi |
|
| 69 |
15 68
|
biimtrdi |
|
| 70 |
11 69
|
mpd |
|
| 71 |
70
|
com12 |
|
| 72 |
10 71
|
biimtrdi |
|
| 73 |
6 72
|
mpd |
|
| 74 |
73
|
imp |
|
| 75 |
5 74
|
ax-mp |
|