Step |
Hyp |
Ref |
Expression |
1 |
|
frgrwopreg.v |
|
2 |
|
frgrwopreg.d |
|
3 |
|
frgrwopreg.a |
|
4 |
|
frgrwopreg.b |
|
5 |
1 2 3 4
|
frgrwopreglem1 |
|
6 |
|
hashv01gt1 |
|
7 |
|
hasheq0 |
|
8 |
|
biidd |
|
9 |
|
biidd |
|
10 |
7 8 9
|
3orbi123d |
|
11 |
|
hashv01gt1 |
|
12 |
|
hasheq0 |
|
13 |
|
biidd |
|
14 |
|
biidd |
|
15 |
12 13 14
|
3orbi123d |
|
16 |
|
olc |
|
17 |
16
|
olcd |
|
18 |
17
|
2a1d |
|
19 |
|
orc |
|
20 |
19
|
olcd |
|
21 |
20
|
2a1d |
|
22 |
|
olc |
|
23 |
22
|
orcd |
|
24 |
23
|
2a1d |
|
25 |
|
orc |
|
26 |
25
|
orcd |
|
27 |
26
|
2a1d |
|
28 |
|
eqid |
|
29 |
1 2 3 4 28
|
frgrwopreglem5 |
|
30 |
|
frgrusgr |
|
31 |
|
simplll |
|
32 |
|
elrabi |
|
33 |
32 3
|
eleq2s |
|
34 |
33
|
adantr |
|
35 |
34
|
ad3antlr |
|
36 |
|
rabidim1 |
|
37 |
36 3
|
eleq2s |
|
38 |
37
|
adantl |
|
39 |
38
|
ad3antlr |
|
40 |
|
simprl |
|
41 |
|
eldifi |
|
42 |
41 4
|
eleq2s |
|
43 |
42
|
adantr |
|
44 |
43
|
ad2antlr |
|
45 |
|
eldifi |
|
46 |
45 4
|
eleq2s |
|
47 |
46
|
adantl |
|
48 |
47
|
ad2antlr |
|
49 |
|
simprr |
|
50 |
1 28
|
4cyclusnfrgr |
|
51 |
31 35 39 40 44 48 49 50
|
syl133anc |
|
52 |
51
|
exp4b |
|
53 |
52
|
3impd |
|
54 |
|
df-nel |
|
55 |
|
pm2.21 |
|
56 |
54 55
|
sylbi |
|
57 |
53 56
|
syl6 |
|
58 |
57
|
rexlimdvva |
|
59 |
58
|
rexlimdvva |
|
60 |
59
|
com23 |
|
61 |
30 60
|
mpcom |
|
62 |
61
|
3ad2ant1 |
|
63 |
29 62
|
mpd |
|
64 |
63
|
3exp |
|
65 |
64
|
com3l |
|
66 |
24 27 65
|
3jaoi |
|
67 |
66
|
com12 |
|
68 |
18 21 67
|
3jaoi |
|
69 |
15 68
|
syl6bi |
|
70 |
11 69
|
mpd |
|
71 |
70
|
com12 |
|
72 |
10 71
|
syl6bi |
|
73 |
6 72
|
mpd |
|
74 |
73
|
imp |
|
75 |
5 74
|
ax-mp |
|