Metamath Proof Explorer


Theorem frgrwopreg2

Description: According to statement 5 in Huneke p. 2: "If ... B is a singleton, then that singleton is a universal friend". (Contributed by Alexander van der Vekens, 1-Jan-2018) (Proof shortened by AV, 4-Feb-2022)

Ref Expression
Hypotheses frgrwopreg.v V = Vtx G
frgrwopreg.d D = VtxDeg G
frgrwopreg.a A = x V | D x = K
frgrwopreg.b B = V A
frgrwopreg.e E = Edg G
Assertion frgrwopreg2 G FriendGraph B = 1 v V w V v v w E

Proof

Step Hyp Ref Expression
1 frgrwopreg.v V = Vtx G
2 frgrwopreg.d D = VtxDeg G
3 frgrwopreg.a A = x V | D x = K
4 frgrwopreg.b B = V A
5 frgrwopreg.e E = Edg G
6 1 2 3 4 frgrwopreglem1 A V B V
7 6 simpri B V
8 hash1snb B V B = 1 v B = v
9 7 8 ax-mp B = 1 v B = v
10 exsnrex v B = v v B B = v
11 difss V A V
12 4 11 eqsstri B V
13 ssrexv B V v B B = v v V B = v
14 12 13 ax-mp v B B = v v V B = v
15 1 2 3 4 5 frgrwopregbsn G FriendGraph v V B = v w V v v w E
16 15 3expia G FriendGraph v V B = v w V v v w E
17 16 reximdva G FriendGraph v V B = v v V w V v v w E
18 14 17 syl5com v B B = v G FriendGraph v V w V v v w E
19 10 18 sylbi v B = v G FriendGraph v V w V v v w E
20 19 com12 G FriendGraph v B = v v V w V v v w E
21 9 20 syl5bi G FriendGraph B = 1 v V w V v v w E
22 21 imp G FriendGraph B = 1 v V w V v v w E