Metamath Proof Explorer


Theorem frgrwopreglem1

Description: Lemma 1 for frgrwopreg : the classes A and B are sets. The definition of A and B corresponds to definition 3 in Huneke p. 2: "Let A be the set of all vertices of degree k, let B be the set of all vertices of degree different from k, ..." (Contributed by Alexander van der Vekens, 31-Dec-2017) (Revised by AV, 10-May-2021)

Ref Expression
Hypotheses frgrwopreg.v V = Vtx G
frgrwopreg.d D = VtxDeg G
frgrwopreg.a A = x V | D x = K
frgrwopreg.b B = V A
Assertion frgrwopreglem1 A V B V

Proof

Step Hyp Ref Expression
1 frgrwopreg.v V = Vtx G
2 frgrwopreg.d D = VtxDeg G
3 frgrwopreg.a A = x V | D x = K
4 frgrwopreg.b B = V A
5 1 fvexi V V
6 rabexg V V x V | D x = K V
7 3 6 eqeltrid V V A V
8 difexg V V V A V
9 4 8 eqeltrid V V B V
10 7 9 jca V V A V B V
11 5 10 ax-mp A V B V