Metamath Proof Explorer


Theorem frgrwopreglem3

Description: Lemma 3 for frgrwopreg . The vertices in the sets A and B have different degrees. (Contributed by Alexander van der Vekens, 30-Dec-2017) (Revised by AV, 10-May-2021) (Proof shortened by AV, 2-Jan-2022)

Ref Expression
Hypotheses frgrwopreg.v V = Vtx G
frgrwopreg.d D = VtxDeg G
frgrwopreg.a A = x V | D x = K
frgrwopreg.b B = V A
Assertion frgrwopreglem3 X A Y B D X D Y

Proof

Step Hyp Ref Expression
1 frgrwopreg.v V = Vtx G
2 frgrwopreg.d D = VtxDeg G
3 frgrwopreg.a A = x V | D x = K
4 frgrwopreg.b B = V A
5 fveqeq2 x = Y D x = K D Y = K
6 5 notbid x = Y ¬ D x = K ¬ D Y = K
7 3 difeq2i V A = V x V | D x = K
8 notrab V x V | D x = K = x V | ¬ D x = K
9 4 7 8 3eqtri B = x V | ¬ D x = K
10 6 9 elrab2 Y B Y V ¬ D Y = K
11 fveqeq2 x = X D x = K D X = K
12 11 3 elrab2 X A X V D X = K
13 eqeq2 D X = K D Y = D X D Y = K
14 13 notbid D X = K ¬ D Y = D X ¬ D Y = K
15 neqne ¬ D Y = D X D Y D X
16 15 necomd ¬ D Y = D X D X D Y
17 14 16 syl6bir D X = K ¬ D Y = K D X D Y
18 12 17 simplbiim X A ¬ D Y = K D X D Y
19 18 com12 ¬ D Y = K X A D X D Y
20 10 19 simplbiim Y B X A D X D Y
21 20 impcom X A Y B D X D Y