Metamath Proof Explorer


Theorem frgrwopreglem4

Description: Lemma 4 for frgrwopreg . In a friendship graph each vertex with degree K is connected with any vertex with degree other than K . This corresponds to statement 4 in Huneke p. 2: "By the first claim, every vertex in A is adjacent to every vertex in B.". (Contributed by Alexander van der Vekens, 30-Dec-2017) (Revised by AV, 10-May-2021) (Proof shortened by AV, 4-Feb-2022)

Ref Expression
Hypotheses frgrwopreg.v V = Vtx G
frgrwopreg.d D = VtxDeg G
frgrwopreg.a A = x V | D x = K
frgrwopreg.b B = V A
frgrwopreg.e E = Edg G
Assertion frgrwopreglem4 G FriendGraph a A b B a b E

Proof

Step Hyp Ref Expression
1 frgrwopreg.v V = Vtx G
2 frgrwopreg.d D = VtxDeg G
3 frgrwopreg.a A = x V | D x = K
4 frgrwopreg.b B = V A
5 frgrwopreg.e E = Edg G
6 simpl G FriendGraph a A b B G FriendGraph
7 elrabi a x V | D x = K a V
8 7 3 eleq2s a A a V
9 eldifi b V A b V
10 9 4 eleq2s b B b V
11 8 10 anim12i a A b B a V b V
12 11 adantl G FriendGraph a A b B a V b V
13 1 2 3 4 frgrwopreglem3 a A b B D a D b
14 13 adantl G FriendGraph a A b B D a D b
15 1 2 5 frgrwopreglem4a G FriendGraph a V b V D a D b a b E
16 6 12 14 15 syl3anc G FriendGraph a A b B a b E
17 16 ralrimivva G FriendGraph a A b B a b E