Step |
Hyp |
Ref |
Expression |
1 |
|
frgrncvvdeq.v |
|
2 |
|
frgrncvvdeq.d |
|
3 |
|
frgrwopreglem4a.e |
|
4 |
|
fveq2 |
|
5 |
4
|
a1i |
|
6 |
5
|
necon3d |
|
7 |
6
|
imp |
|
8 |
7
|
3adant1 |
|
9 |
1 2
|
frgrncvvdeq |
|
10 |
|
oveq2 |
|
11 |
|
neleq2 |
|
12 |
10 11
|
syl |
|
13 |
|
fveqeq2 |
|
14 |
12 13
|
imbi12d |
|
15 |
|
neleq1 |
|
16 |
|
fveq2 |
|
17 |
16
|
eqeq2d |
|
18 |
15 17
|
imbi12d |
|
19 |
|
simpll |
|
20 |
|
sneq |
|
21 |
20
|
difeq2d |
|
22 |
21
|
adantl |
|
23 |
|
simpr |
|
24 |
|
necom |
|
25 |
24
|
biimpi |
|
26 |
23 25
|
anim12i |
|
27 |
|
eldifsn |
|
28 |
26 27
|
sylibr |
|
29 |
14 18 19 22 28
|
rspc2vd |
|
30 |
|
nnel |
|
31 |
|
nbgrsym |
|
32 |
|
frgrusgr |
|
33 |
3
|
nbusgreledg |
|
34 |
32 33
|
syl |
|
35 |
34
|
biimpd |
|
36 |
31 35
|
syl5bi |
|
37 |
36
|
imp |
|
38 |
37
|
a1d |
|
39 |
38
|
expcom |
|
40 |
39
|
a1d |
|
41 |
30 40
|
sylbi |
|
42 |
|
eqneqall |
|
43 |
42
|
2a1d |
|
44 |
41 43
|
ja |
|
45 |
44
|
com12 |
|
46 |
29 45
|
syld |
|
47 |
46
|
com3l |
|
48 |
9 47
|
mpcom |
|
49 |
48
|
expd |
|
50 |
49
|
com34 |
|
51 |
50
|
3imp |
|
52 |
8 51
|
mpd |
|