Metamath Proof Explorer


Theorem frgrwopreglem5a

Description: If a friendship graph has two vertices with the same degree and two other vertices with different degrees, then there is a 4-cycle in the graph. Alternate version of frgrwopreglem5 without a fixed degree and without using the sets A and B . (Contributed by Alexander van der Vekens, 31-Dec-2017) (Revised by AV, 4-Feb-2022)

Ref Expression
Hypotheses frgrncvvdeq.v V=VtxG
frgrncvvdeq.d D=VtxDegG
frgrwopreglem4a.e E=EdgG
Assertion frgrwopreglem5a GFriendGraphAVXVBVYVDA=DXDADBDXDYABEBXEXYEYAE

Proof

Step Hyp Ref Expression
1 frgrncvvdeq.v V=VtxG
2 frgrncvvdeq.d D=VtxDegG
3 frgrwopreglem4a.e E=EdgG
4 id GFriendGraphGFriendGraph
5 simpl AVXVAV
6 simpl BVYVBV
7 5 6 anim12i AVXVBVYVAVBV
8 simp2 DA=DXDADBDXDYDADB
9 1 2 3 frgrwopreglem4a GFriendGraphAVBVDADBABE
10 4 7 8 9 syl3an GFriendGraphAVXVBVYVDA=DXDADBDXDYABE
11 simpr AVXVXV
12 11 6 anim12ci AVXVBVYVBVXV
13 pm13.18 DA=DXDADBDXDB
14 13 3adant3 DA=DXDADBDXDYDXDB
15 14 necomd DA=DXDADBDXDYDBDX
16 1 2 3 frgrwopreglem4a GFriendGraphBVXVDBDXBXE
17 4 12 15 16 syl3an GFriendGraphAVXVBVYVDA=DXDADBDXDYBXE
18 simpr BVYVYV
19 11 18 anim12i AVXVBVYVXVYV
20 simp3 DA=DXDADBDXDYDXDY
21 1 2 3 frgrwopreglem4a GFriendGraphXVYVDXDYXYE
22 4 19 20 21 syl3an GFriendGraphAVXVBVYVDA=DXDADBDXDYXYE
23 5 18 anim12ci AVXVBVYVYVAV
24 pm13.181 DA=DXDXDYDADY
25 24 3adant2 DA=DXDADBDXDYDADY
26 25 necomd DA=DXDADBDXDYDYDA
27 1 2 3 frgrwopreglem4a GFriendGraphYVAVDYDAYAE
28 4 23 26 27 syl3an GFriendGraphAVXVBVYVDA=DXDADBDXDYYAE
29 22 28 jca GFriendGraphAVXVBVYVDA=DXDADBDXDYXYEYAE
30 10 17 29 jca31 GFriendGraphAVXVBVYVDA=DXDADBDXDYABEBXEXYEYAE