Description: If a friendship graph has two vertices with the same degree and two other vertices with different degrees, then there is a 4-cycle in the graph. Alternate version of frgrwopreglem5 without a fixed degree and without using the sets A and B . (Contributed by Alexander van der Vekens, 31-Dec-2017) (Revised by AV, 4-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frgrncvvdeq.v | |
|
frgrncvvdeq.d | |
||
frgrwopreglem4a.e | |
||
Assertion | frgrwopreglem5a | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrncvvdeq.v | |
|
2 | frgrncvvdeq.d | |
|
3 | frgrwopreglem4a.e | |
|
4 | id | |
|
5 | simpl | |
|
6 | simpl | |
|
7 | 5 6 | anim12i | |
8 | simp2 | |
|
9 | 1 2 3 | frgrwopreglem4a | |
10 | 4 7 8 9 | syl3an | |
11 | simpr | |
|
12 | 11 6 | anim12ci | |
13 | pm13.18 | |
|
14 | 13 | 3adant3 | |
15 | 14 | necomd | |
16 | 1 2 3 | frgrwopreglem4a | |
17 | 4 12 15 16 | syl3an | |
18 | simpr | |
|
19 | 11 18 | anim12i | |
20 | simp3 | |
|
21 | 1 2 3 | frgrwopreglem4a | |
22 | 4 19 20 21 | syl3an | |
23 | 5 18 | anim12ci | |
24 | pm13.181 | |
|
25 | 24 | 3adant2 | |
26 | 25 | necomd | |
27 | 1 2 3 | frgrwopreglem4a | |
28 | 4 23 26 27 | syl3an | |
29 | 22 28 | jca | |
30 | 10 17 29 | jca31 | |