Metamath Proof Explorer


Theorem frgrwopreglem5lem

Description: Lemma for frgrwopreglem5 . (Contributed by AV, 5-Feb-2022)

Ref Expression
Hypotheses frgrwopreg.v V = Vtx G
frgrwopreg.d D = VtxDeg G
frgrwopreg.a A = x V | D x = K
frgrwopreg.b B = V A
frgrwopreg.e E = Edg G
Assertion frgrwopreglem5lem a A x A b B y B D a = D x D a D b D x D y

Proof

Step Hyp Ref Expression
1 frgrwopreg.v V = Vtx G
2 frgrwopreg.d D = VtxDeg G
3 frgrwopreg.a A = x V | D x = K
4 frgrwopreg.b B = V A
5 frgrwopreg.e E = Edg G
6 3 rabeq2i x A x V D x = K
7 fveqeq2 x = a D x = K D a = K
8 7 3 elrab2 a A a V D a = K
9 eqtr3 D a = K D x = K D a = D x
10 9 expcom D x = K D a = K D a = D x
11 10 adantl x V D x = K D a = K D a = D x
12 11 com12 D a = K x V D x = K D a = D x
13 8 12 simplbiim a A x V D x = K D a = D x
14 6 13 syl5bi a A x A D a = D x
15 14 imp a A x A D a = D x
16 15 adantr a A x A b B y B D a = D x
17 1 2 3 4 frgrwopreglem3 a A b B D a D b
18 17 ad2ant2r a A x A b B y B D a D b
19 fveqeq2 x = z D x = K D z = K
20 19 cbvrabv x V | D x = K = z V | D z = K
21 3 20 eqtri A = z V | D z = K
22 1 2 21 4 frgrwopreglem3 x A y B D x D y
23 22 ad2ant2l a A x A b B y B D x D y
24 16 18 23 3jca a A x A b B y B D a = D x D a D b D x D y