Metamath Proof Explorer


Theorem friendshipgt3

Description: The friendship theorem for big graphs: In every finite friendship graph with order greater than 3 there is a vertex which is adjacent to all other vertices. (Contributed by Alexander van der Vekens, 9-Oct-2018) (Revised by AV, 4-Jun-2021)

Ref Expression
Hypothesis frgrreggt1.v V = Vtx G
Assertion friendshipgt3 G FriendGraph V Fin 3 < V v V w V v v w Edg G

Proof

Step Hyp Ref Expression
1 frgrreggt1.v V = Vtx G
2 eqid Edg G = Edg G
3 1 2 frgrregorufrg G FriendGraph k 0 u V VtxDeg G u = k G RegUSGraph k v V w V v v w Edg G
4 3 3ad2ant1 G FriendGraph V Fin 3 < V k 0 u V VtxDeg G u = k G RegUSGraph k v V w V v v w Edg G
5 1 frgrogt3nreg G FriendGraph V Fin 3 < V k 0 ¬ G RegUSGraph k
6 frgrusgr G FriendGraph G USGraph
7 6 anim1i G FriendGraph V Fin G USGraph V Fin
8 1 isfusgr G FinUSGraph G USGraph V Fin
9 7 8 sylibr G FriendGraph V Fin G FinUSGraph
10 9 3adant3 G FriendGraph V Fin 3 < V G FinUSGraph
11 0red V Fin 3 < V 0
12 3re 3
13 12 a1i V Fin 3 < V 3
14 hashcl V Fin V 0
15 14 nn0red V Fin V
16 15 adantr V Fin 3 < V V
17 3pos 0 < 3
18 17 a1i V Fin 3 < V 0 < 3
19 simpr V Fin 3 < V 3 < V
20 11 13 16 18 19 lttrd V Fin 3 < V 0 < V
21 20 gt0ne0d V Fin 3 < V V 0
22 hasheq0 V Fin V = 0 V =
23 22 adantr V Fin 3 < V V = 0 V =
24 23 necon3bid V Fin 3 < V V 0 V
25 21 24 mpbid V Fin 3 < V V
26 25 3adant1 G FriendGraph V Fin 3 < V V
27 1 fusgrn0degnn0 G FinUSGraph V t V m 0 VtxDeg G t = m
28 10 26 27 syl2anc G FriendGraph V Fin 3 < V t V m 0 VtxDeg G t = m
29 r19.26 k 0 u V VtxDeg G u = k G RegUSGraph k v V w V v v w Edg G ¬ G RegUSGraph k k 0 u V VtxDeg G u = k G RegUSGraph k v V w V v v w Edg G k 0 ¬ G RegUSGraph k
30 simpllr t V m 0 VtxDeg G t = m G FriendGraph V Fin 3 < V m 0
31 fveqeq2 u = t VtxDeg G u = m VtxDeg G t = m
32 31 rspcev t V VtxDeg G t = m u V VtxDeg G u = m
33 32 ad4ant13 t V m 0 VtxDeg G t = m G FriendGraph V Fin 3 < V u V VtxDeg G u = m
34 ornld u V VtxDeg G u = m u V VtxDeg G u = m G RegUSGraph m v V w V v v w Edg G ¬ G RegUSGraph m v V w V v v w Edg G
35 33 34 syl t V m 0 VtxDeg G t = m G FriendGraph V Fin 3 < V u V VtxDeg G u = m G RegUSGraph m v V w V v v w Edg G ¬ G RegUSGraph m v V w V v v w Edg G
36 35 adantr t V m 0 VtxDeg G t = m G FriendGraph V Fin 3 < V k = m u V VtxDeg G u = m G RegUSGraph m v V w V v v w Edg G ¬ G RegUSGraph m v V w V v v w Edg G
37 eqeq2 k = m VtxDeg G u = k VtxDeg G u = m
38 37 rexbidv k = m u V VtxDeg G u = k u V VtxDeg G u = m
39 breq2 k = m G RegUSGraph k G RegUSGraph m
40 39 orbi1d k = m G RegUSGraph k v V w V v v w Edg G G RegUSGraph m v V w V v v w Edg G
41 38 40 imbi12d k = m u V VtxDeg G u = k G RegUSGraph k v V w V v v w Edg G u V VtxDeg G u = m G RegUSGraph m v V w V v v w Edg G
42 39 notbid k = m ¬ G RegUSGraph k ¬ G RegUSGraph m
43 41 42 anbi12d k = m u V VtxDeg G u = k G RegUSGraph k v V w V v v w Edg G ¬ G RegUSGraph k u V VtxDeg G u = m G RegUSGraph m v V w V v v w Edg G ¬ G RegUSGraph m
44 43 imbi1d k = m u V VtxDeg G u = k G RegUSGraph k v V w V v v w Edg G ¬ G RegUSGraph k v V w V v v w Edg G u V VtxDeg G u = m G RegUSGraph m v V w V v v w Edg G ¬ G RegUSGraph m v V w V v v w Edg G
45 44 adantl t V m 0 VtxDeg G t = m G FriendGraph V Fin 3 < V k = m u V VtxDeg G u = k G RegUSGraph k v V w V v v w Edg G ¬ G RegUSGraph k v V w V v v w Edg G u V VtxDeg G u = m G RegUSGraph m v V w V v v w Edg G ¬ G RegUSGraph m v V w V v v w Edg G
46 36 45 mpbird t V m 0 VtxDeg G t = m G FriendGraph V Fin 3 < V k = m u V VtxDeg G u = k G RegUSGraph k v V w V v v w Edg G ¬ G RegUSGraph k v V w V v v w Edg G
47 30 46 rspcimdv t V m 0 VtxDeg G t = m G FriendGraph V Fin 3 < V k 0 u V VtxDeg G u = k G RegUSGraph k v V w V v v w Edg G ¬ G RegUSGraph k v V w V v v w Edg G
48 47 com12 k 0 u V VtxDeg G u = k G RegUSGraph k v V w V v v w Edg G ¬ G RegUSGraph k t V m 0 VtxDeg G t = m G FriendGraph V Fin 3 < V v V w V v v w Edg G
49 29 48 sylbir k 0 u V VtxDeg G u = k G RegUSGraph k v V w V v v w Edg G k 0 ¬ G RegUSGraph k t V m 0 VtxDeg G t = m G FriendGraph V Fin 3 < V v V w V v v w Edg G
50 49 expcom k 0 ¬ G RegUSGraph k k 0 u V VtxDeg G u = k G RegUSGraph k v V w V v v w Edg G t V m 0 VtxDeg G t = m G FriendGraph V Fin 3 < V v V w V v v w Edg G
51 50 com13 t V m 0 VtxDeg G t = m G FriendGraph V Fin 3 < V k 0 u V VtxDeg G u = k G RegUSGraph k v V w V v v w Edg G k 0 ¬ G RegUSGraph k v V w V v v w Edg G
52 51 exp31 t V m 0 VtxDeg G t = m G FriendGraph V Fin 3 < V k 0 u V VtxDeg G u = k G RegUSGraph k v V w V v v w Edg G k 0 ¬ G RegUSGraph k v V w V v v w Edg G
53 52 rexlimivv t V m 0 VtxDeg G t = m G FriendGraph V Fin 3 < V k 0 u V VtxDeg G u = k G RegUSGraph k v V w V v v w Edg G k 0 ¬ G RegUSGraph k v V w V v v w Edg G
54 28 53 mpcom G FriendGraph V Fin 3 < V k 0 u V VtxDeg G u = k G RegUSGraph k v V w V v v w Edg G k 0 ¬ G RegUSGraph k v V w V v v w Edg G
55 4 5 54 mp2d G FriendGraph V Fin 3 < V v V w V v v w Edg G