| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssdif0 |  | 
						
							| 2 | 1 | necon3bbii |  | 
						
							| 3 |  | difss |  | 
						
							| 4 |  | frmin |  | 
						
							| 5 |  | eldif |  | 
						
							| 6 | 5 | anbi1i |  | 
						
							| 7 |  | anass |  | 
						
							| 8 |  | ancom |  | 
						
							| 9 |  | indif2 |  | 
						
							| 10 |  | df-pred |  | 
						
							| 11 |  | incom |  | 
						
							| 12 | 10 11 | eqtri |  | 
						
							| 13 |  | df-pred |  | 
						
							| 14 |  | incom |  | 
						
							| 15 | 13 14 | eqtri |  | 
						
							| 16 | 15 | difeq1i |  | 
						
							| 17 | 9 12 16 | 3eqtr4i |  | 
						
							| 18 | 17 | eqeq1i |  | 
						
							| 19 |  | ssdif0 |  | 
						
							| 20 | 18 19 | bitr4i |  | 
						
							| 21 | 20 | anbi1i |  | 
						
							| 22 | 8 21 | bitri |  | 
						
							| 23 | 22 | anbi2i |  | 
						
							| 24 | 6 7 23 | 3bitri |  | 
						
							| 25 | 24 | rexbii2 |  | 
						
							| 26 |  | rexanali |  | 
						
							| 27 | 25 26 | bitri |  | 
						
							| 28 | 4 27 | sylib |  | 
						
							| 29 | 28 | ex |  | 
						
							| 30 | 3 29 | mpani |  | 
						
							| 31 | 2 30 | biimtrid |  | 
						
							| 32 | 31 | con4d |  | 
						
							| 33 | 32 | imp |  | 
						
							| 34 | 33 | adantrl |  | 
						
							| 35 |  | simprl |  | 
						
							| 36 | 34 35 | eqssd |  |