Metamath Proof Explorer


Theorem frlm0

Description: Zero in a free module (ring constraint is stronger than necessary, but allows use of frlmlss ). (Contributed by Stefan O'Rear, 4-Feb-2015)

Ref Expression
Hypotheses frlmval.f F = R freeLMod I
frlm0.z 0 ˙ = 0 R
Assertion frlm0 R Ring I W I × 0 ˙ = 0 F

Proof

Step Hyp Ref Expression
1 frlmval.f F = R freeLMod I
2 frlm0.z 0 ˙ = 0 R
3 rlmlmod R Ring ringLMod R LMod
4 eqid ringLMod R 𝑠 I = ringLMod R 𝑠 I
5 4 pwslmod ringLMod R LMod I W ringLMod R 𝑠 I LMod
6 3 5 sylan R Ring I W ringLMod R 𝑠 I LMod
7 eqid Base F = Base F
8 eqid LSubSp ringLMod R 𝑠 I = LSubSp ringLMod R 𝑠 I
9 1 7 8 frlmlss R Ring I W Base F LSubSp ringLMod R 𝑠 I
10 8 lsssubg ringLMod R 𝑠 I LMod Base F LSubSp ringLMod R 𝑠 I Base F SubGrp ringLMod R 𝑠 I
11 6 9 10 syl2anc R Ring I W Base F SubGrp ringLMod R 𝑠 I
12 eqid ringLMod R 𝑠 I 𝑠 Base F = ringLMod R 𝑠 I 𝑠 Base F
13 eqid 0 ringLMod R 𝑠 I = 0 ringLMod R 𝑠 I
14 12 13 subg0 Base F SubGrp ringLMod R 𝑠 I 0 ringLMod R 𝑠 I = 0 ringLMod R 𝑠 I 𝑠 Base F
15 11 14 syl R Ring I W 0 ringLMod R 𝑠 I = 0 ringLMod R 𝑠 I 𝑠 Base F
16 lmodgrp ringLMod R LMod ringLMod R Grp
17 grpmnd ringLMod R Grp ringLMod R Mnd
18 3 16 17 3syl R Ring ringLMod R Mnd
19 rlm0 0 R = 0 ringLMod R
20 2 19 eqtri 0 ˙ = 0 ringLMod R
21 4 20 pws0g ringLMod R Mnd I W I × 0 ˙ = 0 ringLMod R 𝑠 I
22 18 21 sylan R Ring I W I × 0 ˙ = 0 ringLMod R 𝑠 I
23 1 7 frlmpws R Ring I W F = ringLMod R 𝑠 I 𝑠 Base F
24 23 fveq2d R Ring I W 0 F = 0 ringLMod R 𝑠 I 𝑠 Base F
25 15 22 24 3eqtr4d R Ring I W I × 0 ˙ = 0 F