Metamath Proof Explorer


Theorem frlmbas3

Description: An element of the base set of a finite free module with a Cartesian product as index set as operation value. (Contributed by AV, 14-Feb-2019)

Ref Expression
Hypotheses frlmbas3.f F = R freeLMod N × M
frlmbas3.b B = Base R
frlmbas3.v V = Base F
Assertion frlmbas3 R W X V N Fin M Fin I N J M I X J B

Proof

Step Hyp Ref Expression
1 frlmbas3.f F = R freeLMod N × M
2 frlmbas3.b B = Base R
3 frlmbas3.v V = Base F
4 3 eleq2i X V X Base F
5 4 biimpi X V X Base F
6 5 adantl R W X V X Base F
7 6 3ad2ant1 R W X V N Fin M Fin I N J M X Base F
8 simpl R W X V R W
9 xpfi N Fin M Fin N × M Fin
10 8 9 anim12i R W X V N Fin M Fin R W N × M Fin
11 10 3adant3 R W X V N Fin M Fin I N J M R W N × M Fin
12 1 2 frlmfibas R W N × M Fin B N × M = Base F
13 11 12 syl R W X V N Fin M Fin I N J M B N × M = Base F
14 7 13 eleqtrrd R W X V N Fin M Fin I N J M X B N × M
15 elmapi X B N × M X : N × M B
16 14 15 syl R W X V N Fin M Fin I N J M X : N × M B
17 simp3l R W X V N Fin M Fin I N J M I N
18 simp3r R W X V N Fin M Fin I N J M J M
19 16 17 18 fovrnd R W X V N Fin M Fin I N J M I X J B