Metamath Proof Explorer


Theorem frlmbasf

Description: Elements of the free module are functions. (Contributed by Stefan O'Rear, 3-Feb-2015)

Ref Expression
Hypotheses frlmval.f F = R freeLMod I
frlmbasmap.n N = Base R
frlmbasmap.b B = Base F
Assertion frlmbasf I W X B X : I N

Proof

Step Hyp Ref Expression
1 frlmval.f F = R freeLMod I
2 frlmbasmap.n N = Base R
3 frlmbasmap.b B = Base F
4 1 2 3 frlmbasmap I W X B X N I
5 2 fvexi N V
6 elmapg N V I W X N I X : I N
7 5 6 mpan I W X N I X : I N
8 7 adantr I W X B X N I X : I N
9 4 8 mpbid I W X B X : I N