Metamath Proof Explorer


Theorem frlmbasfsupp

Description: Elements of the free module are finitely supported. (Contributed by Stefan O'Rear, 3-Feb-2015) (Revised by Thierry Arnoux, 21-Jun-2019) (Proof shortened by AV, 20-Jul-2019)

Ref Expression
Hypotheses frlmval.f F = R freeLMod I
frlmbasfsupp.z 0 ˙ = 0 R
frlmbasfsupp.b B = Base F
Assertion frlmbasfsupp I W X B finSupp 0 ˙ X

Proof

Step Hyp Ref Expression
1 frlmval.f F = R freeLMod I
2 frlmbasfsupp.z 0 ˙ = 0 R
3 frlmbasfsupp.b B = Base F
4 simpr I W X B X B
5 1 3 frlmrcl X B R V
6 simpl I W X B I W
7 eqid Base R = Base R
8 1 7 2 3 frlmelbas R V I W X B X Base R I finSupp 0 ˙ X
9 5 6 8 syl2an2 I W X B X B X Base R I finSupp 0 ˙ X
10 4 9 mpbid I W X B X Base R I finSupp 0 ˙ X
11 10 simprd I W X B finSupp 0 ˙ X