Metamath Proof Explorer


Theorem frlmbasmap

Description: Elements of the free module are set functions. (Contributed by Stefan O'Rear, 3-Feb-2015) (Proof shortened by AV, 21-Jul-2019)

Ref Expression
Hypotheses frlmval.f F = R freeLMod I
frlmbasmap.n N = Base R
frlmbasmap.b B = Base F
Assertion frlmbasmap I W X B X N I

Proof

Step Hyp Ref Expression
1 frlmval.f F = R freeLMod I
2 frlmbasmap.n N = Base R
3 frlmbasmap.b B = Base F
4 simpr I W X B X B
5 1 3 frlmrcl X B R V
6 simpl I W X B I W
7 eqid 0 R = 0 R
8 1 2 7 3 frlmelbas R V I W X B X N I finSupp 0 R X
9 5 6 8 syl2an2 I W X B X B X N I finSupp 0 R X
10 4 9 mpbid I W X B X N I finSupp 0 R X
11 10 simpld I W X B X N I