Metamath Proof Explorer


Theorem frlmelbas

Description: Membership in the base set of the free module. (Contributed by Stefan O'Rear, 1-Feb-2015) (Revised by AV, 23-Jun-2019)

Ref Expression
Hypotheses frlmval.f F = R freeLMod I
frlmelbas.n N = Base R
frlmelbas.z 0 ˙ = 0 R
frlmelbas.b B = Base F
Assertion frlmelbas R V I W X B X N I finSupp 0 ˙ X

Proof

Step Hyp Ref Expression
1 frlmval.f F = R freeLMod I
2 frlmelbas.n N = Base R
3 frlmelbas.z 0 ˙ = 0 R
4 frlmelbas.b B = Base F
5 eqid k N I | finSupp 0 ˙ k = k N I | finSupp 0 ˙ k
6 1 2 3 5 frlmbas R V I W k N I | finSupp 0 ˙ k = Base F
7 4 6 eqtr4id R V I W B = k N I | finSupp 0 ˙ k
8 7 eleq2d R V I W X B X k N I | finSupp 0 ˙ k
9 breq1 k = X finSupp 0 ˙ k finSupp 0 ˙ X
10 9 elrab X k N I | finSupp 0 ˙ k X N I finSupp 0 ˙ X
11 8 10 bitrdi R V I W X B X N I finSupp 0 ˙ X