Metamath Proof Explorer


Theorem frlmfibas

Description: The base set of the finite free module as a set exponential. (Contributed by AV, 6-Dec-2018)

Ref Expression
Hypotheses frlmfibas.f F = R freeLMod I
frlmfibas.n N = Base R
Assertion frlmfibas R V I Fin N I = Base F

Proof

Step Hyp Ref Expression
1 frlmfibas.f F = R freeLMod I
2 frlmfibas.n N = Base R
3 elmapi a N I a : I N
4 3 adantl I Fin a N I a : I N
5 simpl I Fin a N I I Fin
6 fvexd I Fin a N I 0 R V
7 4 5 6 fdmfifsupp I Fin a N I finSupp 0 R a
8 7 ralrimiva I Fin a N I finSupp 0 R a
9 8 adantl R V I Fin a N I finSupp 0 R a
10 rabid2 N I = a N I | finSupp 0 R a a N I finSupp 0 R a
11 9 10 sylibr R V I Fin N I = a N I | finSupp 0 R a
12 eqid 0 R = 0 R
13 eqid a N I | finSupp 0 R a = a N I | finSupp 0 R a
14 1 2 12 13 frlmbas R V I Fin a N I | finSupp 0 R a = Base F
15 11 14 eqtrd R V I Fin N I = Base F