Metamath Proof Explorer


Theorem frlmip

Description: The inner product of a free module. (Contributed by Thierry Arnoux, 20-Jun-2019)

Ref Expression
Hypotheses frlmphl.y Y = R freeLMod I
frlmphl.b B = Base R
frlmphl.t · ˙ = R
Assertion frlmip I W R V f B I , g B I R x I f x · ˙ g x = 𝑖 Y

Proof

Step Hyp Ref Expression
1 frlmphl.y Y = R freeLMod I
2 frlmphl.b B = Base R
3 frlmphl.t · ˙ = R
4 eqid R freeLMod I = R freeLMod I
5 eqid Base R freeLMod I = Base R freeLMod I
6 4 5 frlmpws R V I W R freeLMod I = ringLMod R 𝑠 I 𝑠 Base R freeLMod I
7 6 ancoms I W R V R freeLMod I = ringLMod R 𝑠 I 𝑠 Base R freeLMod I
8 2 ressid R V R 𝑠 B = R
9 eqidd R V subringAlg R B = subringAlg R B
10 2 eqimssi B Base R
11 10 a1i R V B Base R
12 9 11 srasca R V R 𝑠 B = Scalar subringAlg R B
13 8 12 eqtr3d R V R = Scalar subringAlg R B
14 13 oveq1d R V R 𝑠 I × subringAlg R B = Scalar subringAlg R B 𝑠 I × subringAlg R B
15 14 adantl I W R V R 𝑠 I × subringAlg R B = Scalar subringAlg R B 𝑠 I × subringAlg R B
16 fvex subringAlg R B V
17 rlmval ringLMod R = subringAlg R Base R
18 2 fveq2i subringAlg R B = subringAlg R Base R
19 17 18 eqtr4i ringLMod R = subringAlg R B
20 19 oveq1i ringLMod R 𝑠 I = subringAlg R B 𝑠 I
21 eqid Scalar subringAlg R B = Scalar subringAlg R B
22 20 21 pwsval subringAlg R B V I W ringLMod R 𝑠 I = Scalar subringAlg R B 𝑠 I × subringAlg R B
23 16 22 mpan I W ringLMod R 𝑠 I = Scalar subringAlg R B 𝑠 I × subringAlg R B
24 23 adantr I W R V ringLMod R 𝑠 I = Scalar subringAlg R B 𝑠 I × subringAlg R B
25 15 24 eqtr4d I W R V R 𝑠 I × subringAlg R B = ringLMod R 𝑠 I
26 1 fveq2i Base Y = Base R freeLMod I
27 26 a1i I W R V Base Y = Base R freeLMod I
28 25 27 oveq12d I W R V R 𝑠 I × subringAlg R B 𝑠 Base Y = ringLMod R 𝑠 I 𝑠 Base R freeLMod I
29 7 28 eqtr4d I W R V R freeLMod I = R 𝑠 I × subringAlg R B 𝑠 Base Y
30 1 29 eqtrid I W R V Y = R 𝑠 I × subringAlg R B 𝑠 Base Y
31 30 fveq2d I W R V 𝑖 Y = 𝑖 R 𝑠 I × subringAlg R B 𝑠 Base Y
32 fvex Base Y V
33 eqid R 𝑠 I × subringAlg R B 𝑠 Base Y = R 𝑠 I × subringAlg R B 𝑠 Base Y
34 eqid 𝑖 R 𝑠 I × subringAlg R B = 𝑖 R 𝑠 I × subringAlg R B
35 33 34 ressip Base Y V 𝑖 R 𝑠 I × subringAlg R B = 𝑖 R 𝑠 I × subringAlg R B 𝑠 Base Y
36 32 35 ax-mp 𝑖 R 𝑠 I × subringAlg R B = 𝑖 R 𝑠 I × subringAlg R B 𝑠 Base Y
37 eqid R 𝑠 I × subringAlg R B = R 𝑠 I × subringAlg R B
38 simpr I W R V R V
39 snex subringAlg R B V
40 xpexg I W subringAlg R B V I × subringAlg R B V
41 39 40 mpan2 I W I × subringAlg R B V
42 41 adantr I W R V I × subringAlg R B V
43 eqid Base R 𝑠 I × subringAlg R B = Base R 𝑠 I × subringAlg R B
44 16 snnz subringAlg R B
45 dmxp subringAlg R B dom I × subringAlg R B = I
46 44 45 mp1i I W R V dom I × subringAlg R B = I
47 37 38 42 43 46 34 prdsip I W R V 𝑖 R 𝑠 I × subringAlg R B = f Base R 𝑠 I × subringAlg R B , g Base R 𝑠 I × subringAlg R B R x I f x 𝑖 I × subringAlg R B x g x
48 37 38 42 43 46 prdsbas I W R V Base R 𝑠 I × subringAlg R B = x I Base I × subringAlg R B x
49 eqidd x I subringAlg R B = subringAlg R B
50 10 a1i x I B Base R
51 49 50 srabase x I Base R = Base subringAlg R B
52 2 a1i x I B = Base R
53 16 fvconst2 x I I × subringAlg R B x = subringAlg R B
54 53 fveq2d x I Base I × subringAlg R B x = Base subringAlg R B
55 51 52 54 3eqtr4rd x I Base I × subringAlg R B x = B
56 55 adantl I W R V x I Base I × subringAlg R B x = B
57 56 ixpeq2dva I W R V x I Base I × subringAlg R B x = x I B
58 2 fvexi B V
59 ixpconstg I W B V x I B = B I
60 58 59 mpan2 I W x I B = B I
61 60 adantr I W R V x I B = B I
62 48 57 61 3eqtrd I W R V Base R 𝑠 I × subringAlg R B = B I
63 53 50 sraip x I R = 𝑖 I × subringAlg R B x
64 3 63 eqtr2id x I 𝑖 I × subringAlg R B x = · ˙
65 64 oveqd x I f x 𝑖 I × subringAlg R B x g x = f x · ˙ g x
66 65 mpteq2ia x I f x 𝑖 I × subringAlg R B x g x = x I f x · ˙ g x
67 66 oveq2i R x I f x 𝑖 I × subringAlg R B x g x = R x I f x · ˙ g x
68 67 a1i I W R V R x I f x 𝑖 I × subringAlg R B x g x = R x I f x · ˙ g x
69 62 62 68 mpoeq123dv I W R V f Base R 𝑠 I × subringAlg R B , g Base R 𝑠 I × subringAlg R B R x I f x 𝑖 I × subringAlg R B x g x = f B I , g B I R x I f x · ˙ g x
70 47 69 eqtrd I W R V 𝑖 R 𝑠 I × subringAlg R B = f B I , g B I R x I f x · ˙ g x
71 36 70 eqtr3id I W R V 𝑖 R 𝑠 I × subringAlg R B 𝑠 Base Y = f B I , g B I R x I f x · ˙ g x
72 31 71 eqtr2d I W R V f B I , g B I R x I f x · ˙ g x = 𝑖 Y