Metamath Proof Explorer


Theorem frlmipval

Description: The inner product of a free module. (Contributed by Thierry Arnoux, 21-Jun-2019)

Ref Expression
Hypotheses frlmphl.y Y=RfreeLModI
frlmphl.b B=BaseR
frlmphl.t ·˙=R
frlmphl.v V=BaseY
frlmphl.j ,˙=𝑖Y
Assertion frlmipval IWRXFVGVF,˙G=RF·˙fG

Proof

Step Hyp Ref Expression
1 frlmphl.y Y=RfreeLModI
2 frlmphl.b B=BaseR
3 frlmphl.t ·˙=R
4 frlmphl.v V=BaseY
5 frlmphl.j ,˙=𝑖Y
6 1 2 4 frlmbasmap IWFVFBI
7 6 ad2ant2r IWRXFVGVFBI
8 elmapi FBIF:IB
9 ffn F:IBFFnI
10 7 8 9 3syl IWRXFVGVFFnI
11 1 2 4 frlmbasmap IWGVGBI
12 11 ad2ant2rl IWRXFVGVGBI
13 elmapi GBIG:IB
14 ffn G:IBGFnI
15 12 13 14 3syl IWRXFVGVGFnI
16 simpll IWRXFVGVIW
17 inidm II=I
18 eqidd IWRXFVGVxIFx=Fx
19 eqidd IWRXFVGVxIGx=Gx
20 10 15 16 16 17 18 19 offval IWRXFVGVF·˙fG=xIFx·˙Gx
21 20 oveq2d IWRXFVGVRF·˙fG=RxIFx·˙Gx
22 ovexd IWRXFVGVRxIFx·˙GxV
23 fveq1 f=Ffx=Fx
24 23 oveq1d f=Ffx·˙gx=Fx·˙gx
25 24 mpteq2dv f=FxIfx·˙gx=xIFx·˙gx
26 25 oveq2d f=FRxIfx·˙gx=RxIFx·˙gx
27 fveq1 g=Ggx=Gx
28 27 oveq2d g=GFx·˙gx=Fx·˙Gx
29 28 mpteq2dv g=GxIFx·˙gx=xIFx·˙Gx
30 29 oveq2d g=GRxIFx·˙gx=RxIFx·˙Gx
31 eqid fBI,gBIRxIfx·˙gx=fBI,gBIRxIfx·˙gx
32 26 30 31 ovmpog FBIGBIRxIFx·˙GxVFfBI,gBIRxIfx·˙gxG=RxIFx·˙Gx
33 7 12 22 32 syl3anc IWRXFVGVFfBI,gBIRxIfx·˙gxG=RxIFx·˙Gx
34 1 2 3 frlmip IWRXfBI,gBIRxIfx·˙gx=𝑖Y
35 34 adantr IWRXFVGVfBI,gBIRxIfx·˙gx=𝑖Y
36 35 5 eqtr4di IWRXFVGVfBI,gBIRxIfx·˙gx=,˙
37 36 oveqd IWRXFVGVFfBI,gBIRxIfx·˙gxG=F,˙G
38 21 33 37 3eqtr2rd IWRXFVGVF,˙G=RF·˙fG