Description: The inner product of a free module. (Contributed by Thierry Arnoux, 21-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frlmphl.y | |
|
frlmphl.b | |
||
frlmphl.t | |
||
frlmphl.v | |
||
frlmphl.j | |
||
Assertion | frlmipval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmphl.y | |
|
2 | frlmphl.b | |
|
3 | frlmphl.t | |
|
4 | frlmphl.v | |
|
5 | frlmphl.j | |
|
6 | 1 2 4 | frlmbasmap | |
7 | 6 | ad2ant2r | |
8 | elmapi | |
|
9 | ffn | |
|
10 | 7 8 9 | 3syl | |
11 | 1 2 4 | frlmbasmap | |
12 | 11 | ad2ant2rl | |
13 | elmapi | |
|
14 | ffn | |
|
15 | 12 13 14 | 3syl | |
16 | simpll | |
|
17 | inidm | |
|
18 | eqidd | |
|
19 | eqidd | |
|
20 | 10 15 16 16 17 18 19 | offval | |
21 | 20 | oveq2d | |
22 | ovexd | |
|
23 | fveq1 | |
|
24 | 23 | oveq1d | |
25 | 24 | mpteq2dv | |
26 | 25 | oveq2d | |
27 | fveq1 | |
|
28 | 27 | oveq2d | |
29 | 28 | mpteq2dv | |
30 | 29 | oveq2d | |
31 | eqid | |
|
32 | 26 30 31 | ovmpog | |
33 | 7 12 22 32 | syl3anc | |
34 | 1 2 3 | frlmip | |
35 | 34 | adantr | |
36 | 35 5 | eqtr4di | |
37 | 36 | oveqd | |
38 | 21 33 37 | 3eqtr2rd | |