Metamath Proof Explorer


Theorem frlmisfrlm

Description: A free module is isomorphic to a free module over the same (nonzero) ring, with the same cardinality. (Contributed by AV, 10-Mar-2019)

Ref Expression
Assertion frlmisfrlm R NzRing I Y I J R freeLMod I 𝑚 R freeLMod J

Proof

Step Hyp Ref Expression
1 nzrring R NzRing R Ring
2 eqid R freeLMod I = R freeLMod I
3 2 frlmlmod R Ring I Y R freeLMod I LMod
4 1 3 sylan R NzRing I Y R freeLMod I LMod
5 4 3adant3 R NzRing I Y I J R freeLMod I LMod
6 eqid R unitVec I = R unitVec I
7 eqid LBasis R freeLMod I = LBasis R freeLMod I
8 2 6 7 frlmlbs R Ring I Y ran R unitVec I LBasis R freeLMod I
9 1 8 sylan R NzRing I Y ran R unitVec I LBasis R freeLMod I
10 9 3adant3 R NzRing I Y I J ran R unitVec I LBasis R freeLMod I
11 simp3 R NzRing I Y I J I J
12 11 ensymd R NzRing I Y I J J I
13 6 uvcendim R NzRing I Y I ran R unitVec I
14 13 3adant3 R NzRing I Y I J I ran R unitVec I
15 entr J I I ran R unitVec I J ran R unitVec I
16 12 14 15 syl2anc R NzRing I Y I J J ran R unitVec I
17 eqid Scalar R freeLMod I = Scalar R freeLMod I
18 17 7 lbslcic R freeLMod I LMod ran R unitVec I LBasis R freeLMod I J ran R unitVec I R freeLMod I 𝑚 Scalar R freeLMod I freeLMod J
19 5 10 16 18 syl3anc R NzRing I Y I J R freeLMod I 𝑚 Scalar R freeLMod I freeLMod J
20 2 frlmsca R NzRing I Y R = Scalar R freeLMod I
21 20 3adant3 R NzRing I Y I J R = Scalar R freeLMod I
22 21 oveq1d R NzRing I Y I J R freeLMod J = Scalar R freeLMod I freeLMod J
23 19 22 breqtrrd R NzRing I Y I J R freeLMod I 𝑚 R freeLMod J