Database
BASIC LINEAR ALGEBRA
Vectors and free modules
Free modules
frlmlmod
Next ⟩
frlmpws
Metamath Proof Explorer
Ascii
Unicode
Theorem
frlmlmod
Description:
The free module is a module.
(Contributed by
Stefan O'Rear
, 1-Feb-2015)
Ref
Expression
Hypothesis
frlmval.f
⊢
F
=
R
freeLMod
I
Assertion
frlmlmod
⊢
R
∈
Ring
∧
I
∈
W
→
F
∈
LMod
Proof
Step
Hyp
Ref
Expression
1
frlmval.f
⊢
F
=
R
freeLMod
I
2
1
frlmval
⊢
R
∈
Ring
∧
I
∈
W
→
F
=
R
⊕
m
I
×
ringLMod
⁡
R
3
simpr
⊢
R
∈
Ring
∧
I
∈
W
→
I
∈
W
4
simpl
⊢
R
∈
Ring
∧
I
∈
W
→
R
∈
Ring
5
rlmlmod
⊢
R
∈
Ring
→
ringLMod
⁡
R
∈
LMod
6
5
adantr
⊢
R
∈
Ring
∧
I
∈
W
→
ringLMod
⁡
R
∈
LMod
7
fconst6g
⊢
ringLMod
⁡
R
∈
LMod
→
I
×
ringLMod
⁡
R
:
I
⟶
LMod
8
6
7
syl
⊢
R
∈
Ring
∧
I
∈
W
→
I
×
ringLMod
⁡
R
:
I
⟶
LMod
9
fvex
⊢
ringLMod
⁡
R
∈
V
10
9
fvconst2
⊢
i
∈
I
→
I
×
ringLMod
⁡
R
⁡
i
=
ringLMod
⁡
R
11
10
adantl
⊢
R
∈
Ring
∧
I
∈
W
∧
i
∈
I
→
I
×
ringLMod
⁡
R
⁡
i
=
ringLMod
⁡
R
12
11
fveq2d
⊢
R
∈
Ring
∧
I
∈
W
∧
i
∈
I
→
Scalar
⁡
I
×
ringLMod
⁡
R
⁡
i
=
Scalar
⁡
ringLMod
⁡
R
13
rlmsca
⊢
R
∈
Ring
→
R
=
Scalar
⁡
ringLMod
⁡
R
14
13
ad2antrr
⊢
R
∈
Ring
∧
I
∈
W
∧
i
∈
I
→
R
=
Scalar
⁡
ringLMod
⁡
R
15
12
14
eqtr4d
⊢
R
∈
Ring
∧
I
∈
W
∧
i
∈
I
→
Scalar
⁡
I
×
ringLMod
⁡
R
⁡
i
=
R
16
eqid
⊢
R
⊕
m
I
×
ringLMod
⁡
R
=
R
⊕
m
I
×
ringLMod
⁡
R
17
3
4
8
15
16
dsmmlmod
⊢
R
∈
Ring
∧
I
∈
W
→
R
⊕
m
I
×
ringLMod
⁡
R
∈
LMod
18
2
17
eqeltrd
⊢
R
∈
Ring
∧
I
∈
W
→
F
∈
LMod