Metamath Proof Explorer


Theorem frlmlmod

Description: The free module is a module. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypothesis frlmval.f F = R freeLMod I
Assertion frlmlmod R Ring I W F LMod

Proof

Step Hyp Ref Expression
1 frlmval.f F = R freeLMod I
2 1 frlmval R Ring I W F = R m I × ringLMod R
3 simpr R Ring I W I W
4 simpl R Ring I W R Ring
5 rlmlmod R Ring ringLMod R LMod
6 5 adantr R Ring I W ringLMod R LMod
7 fconst6g ringLMod R LMod I × ringLMod R : I LMod
8 6 7 syl R Ring I W I × ringLMod R : I LMod
9 fvex ringLMod R V
10 9 fvconst2 i I I × ringLMod R i = ringLMod R
11 10 adantl R Ring I W i I I × ringLMod R i = ringLMod R
12 11 fveq2d R Ring I W i I Scalar I × ringLMod R i = Scalar ringLMod R
13 rlmsca R Ring R = Scalar ringLMod R
14 13 ad2antrr R Ring I W i I R = Scalar ringLMod R
15 12 14 eqtr4d R Ring I W i I Scalar I × ringLMod R i = R
16 eqid R m I × ringLMod R = R m I × ringLMod R
17 3 4 8 15 16 dsmmlmod R Ring I W R m I × ringLMod R LMod
18 2 17 eqeltrd R Ring I W F LMod