Metamath Proof Explorer


Theorem frlmlss

Description: The base set of the free module is a subspace of the power module. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypotheses frlmval.f F = R freeLMod I
frlmpws.b B = Base F
frlmlss.u U = LSubSp ringLMod R 𝑠 I
Assertion frlmlss R Ring I W B U

Proof

Step Hyp Ref Expression
1 frlmval.f F = R freeLMod I
2 frlmpws.b B = Base F
3 frlmlss.u U = LSubSp ringLMod R 𝑠 I
4 1 frlmval R Ring I W F = R m I × ringLMod R
5 4 fveq2d R Ring I W Base F = Base R m I × ringLMod R
6 2 5 syl5eq R Ring I W B = Base R m I × ringLMod R
7 simpr R Ring I W I W
8 simpl R Ring I W R Ring
9 rlmlmod R Ring ringLMod R LMod
10 9 adantr R Ring I W ringLMod R LMod
11 fconst6g ringLMod R LMod I × ringLMod R : I LMod
12 10 11 syl R Ring I W I × ringLMod R : I LMod
13 fvex ringLMod R V
14 13 fvconst2 i I I × ringLMod R i = ringLMod R
15 14 adantl R Ring I W i I I × ringLMod R i = ringLMod R
16 15 fveq2d R Ring I W i I Scalar I × ringLMod R i = Scalar ringLMod R
17 rlmsca R Ring R = Scalar ringLMod R
18 17 ad2antrr R Ring I W i I R = Scalar ringLMod R
19 16 18 eqtr4d R Ring I W i I Scalar I × ringLMod R i = R
20 eqid R 𝑠 I × ringLMod R = R 𝑠 I × ringLMod R
21 eqid LSubSp R 𝑠 I × ringLMod R = LSubSp R 𝑠 I × ringLMod R
22 eqid Base R m I × ringLMod R = Base R m I × ringLMod R
23 7 8 12 19 20 21 22 dsmmlss R Ring I W Base R m I × ringLMod R LSubSp R 𝑠 I × ringLMod R
24 eqid ringLMod R 𝑠 I = ringLMod R 𝑠 I
25 eqid Scalar ringLMod R = Scalar ringLMod R
26 24 25 pwsval ringLMod R V I W ringLMod R 𝑠 I = Scalar ringLMod R 𝑠 I × ringLMod R
27 13 26 mpan I W ringLMod R 𝑠 I = Scalar ringLMod R 𝑠 I × ringLMod R
28 27 adantl R Ring I W ringLMod R 𝑠 I = Scalar ringLMod R 𝑠 I × ringLMod R
29 17 eqcomd R Ring Scalar ringLMod R = R
30 29 adantr R Ring I W Scalar ringLMod R = R
31 30 oveq1d R Ring I W Scalar ringLMod R 𝑠 I × ringLMod R = R 𝑠 I × ringLMod R
32 28 31 eqtr2d R Ring I W R 𝑠 I × ringLMod R = ringLMod R 𝑠 I
33 32 fveq2d R Ring I W LSubSp R 𝑠 I × ringLMod R = LSubSp ringLMod R 𝑠 I
34 33 3 syl6eqr R Ring I W LSubSp R 𝑠 I × ringLMod R = U
35 23 34 eleqtrd R Ring I W Base R m I × ringLMod R U
36 6 35 eqeltrd R Ring I W B U