Metamath Proof Explorer


Theorem frlmlvec

Description: The free module over a division ring is a left vector space. (Contributed by Steven Nguyen, 29-Apr-2023)

Ref Expression
Hypothesis frlmlvec.1 F = R freeLMod I
Assertion frlmlvec R DivRing I W F LVec

Proof

Step Hyp Ref Expression
1 frlmlvec.1 F = R freeLMod I
2 drngring R DivRing R Ring
3 1 frlmlmod R Ring I W F LMod
4 2 3 sylan R DivRing I W F LMod
5 1 frlmsca R DivRing I W R = Scalar F
6 simpl R DivRing I W R DivRing
7 5 6 eqeltrrd R DivRing I W Scalar F DivRing
8 eqid Scalar F = Scalar F
9 8 islvec F LVec F LMod Scalar F DivRing
10 4 7 9 sylanbrc R DivRing I W F LVec