Step |
Hyp |
Ref |
Expression |
1 |
|
frlmphl.y |
|
2 |
|
frlmphl.b |
|
3 |
|
frlmphl.t |
|
4 |
|
frlmphl.v |
|
5 |
|
frlmphl.j |
|
6 |
|
frlmphl.o |
|
7 |
|
frlmphl.0 |
|
8 |
|
frlmphl.s |
|
9 |
|
frlmphl.f |
|
10 |
|
frlmphl.m |
|
11 |
|
frlmphl.u |
|
12 |
|
frlmphl.i |
|
13 |
12
|
3ad2ant1 |
|
14 |
|
simp2 |
|
15 |
1 2 4
|
frlmbasmap |
|
16 |
13 14 15
|
syl2anc |
|
17 |
|
elmapi |
|
18 |
16 17
|
syl |
|
19 |
18
|
ffnd |
|
20 |
|
simp3 |
|
21 |
1 2 4
|
frlmbasmap |
|
22 |
13 20 21
|
syl2anc |
|
23 |
|
elmapi |
|
24 |
22 23
|
syl |
|
25 |
24
|
ffnd |
|
26 |
|
inidm |
|
27 |
|
eqidd |
|
28 |
|
eqidd |
|
29 |
19 25 13 13 26 27 28
|
offval |
|
30 |
29
|
oveq1d |
|
31 |
|
ovexd |
|
32 |
|
funmpt |
|
33 |
|
funeq |
|
34 |
32 33
|
mpbiri |
|
35 |
29 34
|
syl |
|
36 |
1 7 4
|
frlmbasfsupp |
|
37 |
13 14 36
|
syl2anc |
|
38 |
|
isfld |
|
39 |
9 38
|
sylib |
|
40 |
39
|
simpld |
|
41 |
|
drngring |
|
42 |
40 41
|
syl |
|
43 |
42
|
3ad2ant1 |
|
44 |
2 7
|
ring0cl |
|
45 |
43 44
|
syl |
|
46 |
2 3 7
|
ringlz |
|
47 |
43 46
|
sylan |
|
48 |
13 45 18 24 47
|
suppofss1d |
|
49 |
|
fsuppsssupp |
|
50 |
49
|
fsuppimpd |
|
51 |
31 35 37 48 50
|
syl22anc |
|
52 |
30 51
|
eqeltrrd |
|
53 |
13
|
mptexd |
|
54 |
45
|
elexd |
|
55 |
|
funisfsupp |
|
56 |
32 53 54 55
|
mp3an2i |
|
57 |
52 56
|
mpbird |
|