Metamath Proof Explorer


Theorem frlmplusgval

Description: Addition in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Hypotheses frlmplusgval.y Y = R freeLMod I
frlmplusgval.b B = Base Y
frlmplusgval.r φ R V
frlmplusgval.i φ I W
frlmplusgval.f φ F B
frlmplusgval.g φ G B
frlmplusgval.a + ˙ = + R
frlmplusgval.p ˙ = + Y
Assertion frlmplusgval φ F ˙ G = F + ˙ f G

Proof

Step Hyp Ref Expression
1 frlmplusgval.y Y = R freeLMod I
2 frlmplusgval.b B = Base Y
3 frlmplusgval.r φ R V
4 frlmplusgval.i φ I W
5 frlmplusgval.f φ F B
6 frlmplusgval.g φ G B
7 frlmplusgval.a + ˙ = + R
8 frlmplusgval.p ˙ = + Y
9 eqid Base Y = Base Y
10 1 9 frlmpws R V I W Y = ringLMod R 𝑠 I 𝑠 Base Y
11 3 4 10 syl2anc φ Y = ringLMod R 𝑠 I 𝑠 Base Y
12 11 fveq2d φ + Y = + ringLMod R 𝑠 I 𝑠 Base Y
13 fvex Base Y V
14 eqid ringLMod R 𝑠 I 𝑠 Base Y = ringLMod R 𝑠 I 𝑠 Base Y
15 eqid + ringLMod R 𝑠 I = + ringLMod R 𝑠 I
16 14 15 ressplusg Base Y V + ringLMod R 𝑠 I = + ringLMod R 𝑠 I 𝑠 Base Y
17 13 16 ax-mp + ringLMod R 𝑠 I = + ringLMod R 𝑠 I 𝑠 Base Y
18 12 8 17 3eqtr4g φ ˙ = + ringLMod R 𝑠 I
19 18 oveqd φ F ˙ G = F + ringLMod R 𝑠 I G
20 eqid ringLMod R 𝑠 I = ringLMod R 𝑠 I
21 eqid Base ringLMod R 𝑠 I = Base ringLMod R 𝑠 I
22 fvexd φ ringLMod R V
23 1 2 frlmpws R V I W Y = ringLMod R 𝑠 I 𝑠 B
24 3 4 23 syl2anc φ Y = ringLMod R 𝑠 I 𝑠 B
25 24 fveq2d φ Base Y = Base ringLMod R 𝑠 I 𝑠 B
26 2 25 eqtrid φ B = Base ringLMod R 𝑠 I 𝑠 B
27 eqid ringLMod R 𝑠 I 𝑠 B = ringLMod R 𝑠 I 𝑠 B
28 27 21 ressbasss Base ringLMod R 𝑠 I 𝑠 B Base ringLMod R 𝑠 I
29 26 28 eqsstrdi φ B Base ringLMod R 𝑠 I
30 29 5 sseldd φ F Base ringLMod R 𝑠 I
31 29 6 sseldd φ G Base ringLMod R 𝑠 I
32 rlmplusg + R = + ringLMod R
33 7 32 eqtri + ˙ = + ringLMod R
34 20 21 22 4 30 31 33 15 pwsplusgval φ F + ringLMod R 𝑠 I G = F + ˙ f G
35 19 34 eqtrd φ F ˙ G = F + ˙ f G