Metamath Proof Explorer


Theorem frlmrcl

Description: If a free module is inhabited, this is sufficient to conclude that the ring expression defines a set. (Contributed by Stefan O'Rear, 3-Feb-2015)

Ref Expression
Hypotheses frlmval.f F = R freeLMod I
frlmrcl.b B = Base F
Assertion frlmrcl X B R V

Proof

Step Hyp Ref Expression
1 frlmval.f F = R freeLMod I
2 frlmrcl.b B = Base F
3 df-frlm freeLMod = r V , i V r m i × ringLMod r
4 3 reldmmpo Rel dom freeLMod
5 1 2 4 strov2rcl X B R V