Database
BASIC LINEAR ALGEBRA
Vectors and free modules
Free modules
frlmrcl
Metamath Proof Explorer
Description: If a free module is inhabited, this is sufficient to conclude that the
ring expression defines a set. (Contributed by Stefan O'Rear , 3-Feb-2015)
Ref
Expression
Hypotheses
frlmval.f
⊢ F = R freeLMod I
frlmrcl.b
⊢ B = Base F
Assertion
frlmrcl
⊢ X ∈ B → R ∈ V
Proof
Step
Hyp
Ref
Expression
1
frlmval.f
⊢ F = R freeLMod I
2
frlmrcl.b
⊢ B = Base F
3
df-frlm
⊢ freeLMod = r ∈ V , i ∈ V ⟼ r ⊕ m i × ringLMod ⁡ r
4
3
reldmmpo
⊢ Rel ⁡ dom ⁡ freeLMod
5
1 2 4
strov2rcl
⊢ X ∈ B → R ∈ V