Database
BASIC LINEAR ALGEBRA
Vectors and free modules
Free modules
frlmsca
Next ⟩
frlm0
Metamath Proof Explorer
Ascii
Unicode
Theorem
frlmsca
Description:
The ring of scalars of a free module.
(Contributed by
Stefan O'Rear
, 1-Feb-2015)
Ref
Expression
Hypothesis
frlmval.f
⊢
F
=
R
freeLMod
I
Assertion
frlmsca
⊢
R
∈
V
∧
I
∈
W
→
R
=
Scalar
⁡
F
Proof
Step
Hyp
Ref
Expression
1
frlmval.f
⊢
F
=
R
freeLMod
I
2
fvex
⊢
ringLMod
⁡
R
∈
V
3
eqid
⊢
ringLMod
⁡
R
↑
𝑠
I
=
ringLMod
⁡
R
↑
𝑠
I
4
eqid
⊢
Scalar
⁡
ringLMod
⁡
R
=
Scalar
⁡
ringLMod
⁡
R
5
3
4
pwssca
⊢
ringLMod
⁡
R
∈
V
∧
I
∈
W
→
Scalar
⁡
ringLMod
⁡
R
=
Scalar
⁡
ringLMod
⁡
R
↑
𝑠
I
6
2
5
mpan
⊢
I
∈
W
→
Scalar
⁡
ringLMod
⁡
R
=
Scalar
⁡
ringLMod
⁡
R
↑
𝑠
I
7
6
adantl
⊢
R
∈
V
∧
I
∈
W
→
Scalar
⁡
ringLMod
⁡
R
=
Scalar
⁡
ringLMod
⁡
R
↑
𝑠
I
8
fvex
⊢
Base
F
∈
V
9
eqid
⊢
ringLMod
⁡
R
↑
𝑠
I
↾
𝑠
Base
F
=
ringLMod
⁡
R
↑
𝑠
I
↾
𝑠
Base
F
10
eqid
⊢
Scalar
⁡
ringLMod
⁡
R
↑
𝑠
I
=
Scalar
⁡
ringLMod
⁡
R
↑
𝑠
I
11
9
10
resssca
⊢
Base
F
∈
V
→
Scalar
⁡
ringLMod
⁡
R
↑
𝑠
I
=
Scalar
⁡
ringLMod
⁡
R
↑
𝑠
I
↾
𝑠
Base
F
12
8
11
ax-mp
⊢
Scalar
⁡
ringLMod
⁡
R
↑
𝑠
I
=
Scalar
⁡
ringLMod
⁡
R
↑
𝑠
I
↾
𝑠
Base
F
13
7
12
eqtrdi
⊢
R
∈
V
∧
I
∈
W
→
Scalar
⁡
ringLMod
⁡
R
=
Scalar
⁡
ringLMod
⁡
R
↑
𝑠
I
↾
𝑠
Base
F
14
rlmsca
⊢
R
∈
V
→
R
=
Scalar
⁡
ringLMod
⁡
R
15
14
adantr
⊢
R
∈
V
∧
I
∈
W
→
R
=
Scalar
⁡
ringLMod
⁡
R
16
eqid
⊢
Base
F
=
Base
F
17
1
16
frlmpws
⊢
R
∈
V
∧
I
∈
W
→
F
=
ringLMod
⁡
R
↑
𝑠
I
↾
𝑠
Base
F
18
17
fveq2d
⊢
R
∈
V
∧
I
∈
W
→
Scalar
⁡
F
=
Scalar
⁡
ringLMod
⁡
R
↑
𝑠
I
↾
𝑠
Base
F
19
13
15
18
3eqtr4d
⊢
R
∈
V
∧
I
∈
W
→
R
=
Scalar
⁡
F