Metamath Proof Explorer


Theorem frlmsslss2

Description: A subset of a free module obtained by restricting the support set is a submodule. J is the set of permitted unit vectors. (Contributed by Stefan O'Rear, 5-Feb-2015) (Revised by AV, 23-Jun-2019)

Ref Expression
Hypotheses frlmsslss.y Y = R freeLMod I
frlmsslss.u U = LSubSp Y
frlmsslss.b B = Base Y
frlmsslss.z 0 ˙ = 0 R
frlmsslss2.c C = x B | x supp 0 ˙ J
Assertion frlmsslss2 R Ring I V J I C U

Proof

Step Hyp Ref Expression
1 frlmsslss.y Y = R freeLMod I
2 frlmsslss.u U = LSubSp Y
3 frlmsslss.b B = Base Y
4 frlmsslss.z 0 ˙ = 0 R
5 frlmsslss2.c C = x B | x supp 0 ˙ J
6 eqid Base R = Base R
7 1 6 3 frlmbasf I V x B x : I Base R
8 7 3ad2antl2 R Ring I V J I x B x : I Base R
9 8 ffnd R Ring I V J I x B x Fn I
10 simpl3 R Ring I V J I x B J I
11 undif J I J I J = I
12 10 11 sylib R Ring I V J I x B J I J = I
13 12 fneq2d R Ring I V J I x B x Fn J I J x Fn I
14 9 13 mpbird R Ring I V J I x B x Fn J I J
15 simpr R Ring I V J I x B x B
16 4 fvexi 0 ˙ V
17 16 a1i R Ring I V J I x B 0 ˙ V
18 disjdif J I J =
19 18 a1i R Ring I V J I x B J I J =
20 fnsuppres x Fn J I J x B 0 ˙ V J I J = x supp 0 ˙ J x I J = I J × 0 ˙
21 14 15 17 19 20 syl121anc R Ring I V J I x B x supp 0 ˙ J x I J = I J × 0 ˙
22 21 rabbidva R Ring I V J I x B | x supp 0 ˙ J = x B | x I J = I J × 0 ˙
23 5 22 eqtrid R Ring I V J I C = x B | x I J = I J × 0 ˙
24 difssd R Ring I V J I I J I
25 eqid x B | x I J = I J × 0 ˙ = x B | x I J = I J × 0 ˙
26 1 2 3 4 25 frlmsslss R Ring I V I J I x B | x I J = I J × 0 ˙ U
27 24 26 syld3an3 R Ring I V J I x B | x I J = I J × 0 ˙ U
28 23 27 eqeltrd R Ring I V J I C U