Step |
Hyp |
Ref |
Expression |
1 |
|
frlmssuvc1.f |
|
2 |
|
frlmssuvc1.u |
|
3 |
|
frlmssuvc1.b |
|
4 |
|
frlmssuvc1.k |
|
5 |
|
frlmssuvc1.t |
|
6 |
|
frlmssuvc1.z |
|
7 |
|
frlmssuvc1.c |
|
8 |
|
frlmssuvc1.r |
|
9 |
|
frlmssuvc1.i |
|
10 |
|
frlmssuvc1.j |
|
11 |
|
frlmssuvc1.l |
|
12 |
|
frlmssuvc1.x |
|
13 |
1
|
frlmlmod |
|
14 |
8 9 13
|
syl2anc |
|
15 |
|
eqid |
|
16 |
1 15 3 6 7
|
frlmsslss2 |
|
17 |
8 9 10 16
|
syl3anc |
|
18 |
1
|
frlmsca |
|
19 |
8 9 18
|
syl2anc |
|
20 |
19
|
fveq2d |
|
21 |
4 20
|
eqtrid |
|
22 |
12 21
|
eleqtrd |
|
23 |
2 1 3
|
uvcff |
|
24 |
8 9 23
|
syl2anc |
|
25 |
10 11
|
sseldd |
|
26 |
24 25
|
ffvelrnd |
|
27 |
1 4 3
|
frlmbasf |
|
28 |
9 26 27
|
syl2anc |
|
29 |
8
|
adantr |
|
30 |
9
|
adantr |
|
31 |
25
|
adantr |
|
32 |
|
eldifi |
|
33 |
32
|
adantl |
|
34 |
|
disjdif |
|
35 |
|
simpr |
|
36 |
|
disjne |
|
37 |
34 11 35 36
|
mp3an2ani |
|
38 |
2 29 30 31 33 37 6
|
uvcvv0 |
|
39 |
28 38
|
suppss |
|
40 |
|
oveq1 |
|
41 |
40
|
sseq1d |
|
42 |
41 7
|
elrab2 |
|
43 |
26 39 42
|
sylanbrc |
|
44 |
|
eqid |
|
45 |
|
eqid |
|
46 |
44 5 45 15
|
lssvscl |
|
47 |
14 17 22 43 46
|
syl22anc |
|