Metamath Proof Explorer


Theorem frlmssuvc1

Description: A scalar multiple of a unit vector included in a support-restriction subspace is included in the subspace. (Contributed by Stefan O'Rear, 5-Feb-2015) (Revised by AV, 24-Jun-2019)

Ref Expression
Hypotheses frlmssuvc1.f F = R freeLMod I
frlmssuvc1.u U = R unitVec I
frlmssuvc1.b B = Base F
frlmssuvc1.k K = Base R
frlmssuvc1.t · ˙ = F
frlmssuvc1.z 0 ˙ = 0 R
frlmssuvc1.c C = x B | x supp 0 ˙ J
frlmssuvc1.r φ R Ring
frlmssuvc1.i φ I V
frlmssuvc1.j φ J I
frlmssuvc1.l φ L J
frlmssuvc1.x φ X K
Assertion frlmssuvc1 φ X · ˙ U L C

Proof

Step Hyp Ref Expression
1 frlmssuvc1.f F = R freeLMod I
2 frlmssuvc1.u U = R unitVec I
3 frlmssuvc1.b B = Base F
4 frlmssuvc1.k K = Base R
5 frlmssuvc1.t · ˙ = F
6 frlmssuvc1.z 0 ˙ = 0 R
7 frlmssuvc1.c C = x B | x supp 0 ˙ J
8 frlmssuvc1.r φ R Ring
9 frlmssuvc1.i φ I V
10 frlmssuvc1.j φ J I
11 frlmssuvc1.l φ L J
12 frlmssuvc1.x φ X K
13 1 frlmlmod R Ring I V F LMod
14 8 9 13 syl2anc φ F LMod
15 eqid LSubSp F = LSubSp F
16 1 15 3 6 7 frlmsslss2 R Ring I V J I C LSubSp F
17 8 9 10 16 syl3anc φ C LSubSp F
18 1 frlmsca R Ring I V R = Scalar F
19 8 9 18 syl2anc φ R = Scalar F
20 19 fveq2d φ Base R = Base Scalar F
21 4 20 eqtrid φ K = Base Scalar F
22 12 21 eleqtrd φ X Base Scalar F
23 2 1 3 uvcff R Ring I V U : I B
24 8 9 23 syl2anc φ U : I B
25 10 11 sseldd φ L I
26 24 25 ffvelrnd φ U L B
27 1 4 3 frlmbasf I V U L B U L : I K
28 9 26 27 syl2anc φ U L : I K
29 8 adantr φ x I J R Ring
30 9 adantr φ x I J I V
31 25 adantr φ x I J L I
32 eldifi x I J x I
33 32 adantl φ x I J x I
34 disjdif J I J =
35 simpr φ x I J x I J
36 disjne J I J = L J x I J L x
37 34 11 35 36 mp3an2ani φ x I J L x
38 2 29 30 31 33 37 6 uvcvv0 φ x I J U L x = 0 ˙
39 28 38 suppss φ U L supp 0 ˙ J
40 oveq1 x = U L x supp 0 ˙ = U L supp 0 ˙
41 40 sseq1d x = U L x supp 0 ˙ J U L supp 0 ˙ J
42 41 7 elrab2 U L C U L B U L supp 0 ˙ J
43 26 39 42 sylanbrc φ U L C
44 eqid Scalar F = Scalar F
45 eqid Base Scalar F = Base Scalar F
46 44 5 45 15 lssvscl F LMod C LSubSp F X Base Scalar F U L C X · ˙ U L C
47 14 17 22 43 46 syl22anc φ X · ˙ U L C