Step |
Hyp |
Ref |
Expression |
1 |
|
frlmup.f |
|
2 |
|
frlmup.b |
|
3 |
|
frlmup.c |
|
4 |
|
frlmup.v |
|
5 |
|
frlmup.e |
|
6 |
|
frlmup.t |
|
7 |
|
frlmup.i |
|
8 |
|
frlmup.r |
|
9 |
|
frlmup.a |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
12
|
lmodring |
|
15 |
6 14
|
syl |
|
16 |
8 15
|
eqeltrd |
|
17 |
1
|
frlmlmod |
|
18 |
16 7 17
|
syl2anc |
|
19 |
1
|
frlmsca |
|
20 |
16 7 19
|
syl2anc |
|
21 |
8 20
|
eqtr3d |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
|
lmodgrp |
|
25 |
18 24
|
syl |
|
26 |
|
lmodgrp |
|
27 |
6 26
|
syl |
|
28 |
|
eleq1w |
|
29 |
28
|
anbi2d |
|
30 |
|
oveq1 |
|
31 |
30
|
oveq2d |
|
32 |
31
|
eleq1d |
|
33 |
29 32
|
imbi12d |
|
34 |
|
eqid |
|
35 |
|
lmodcmn |
|
36 |
6 35
|
syl |
|
37 |
36
|
adantr |
|
38 |
7
|
adantr |
|
39 |
6
|
ad2antrr |
|
40 |
|
simprl |
|
41 |
8
|
fveq2d |
|
42 |
41
|
ad2antrr |
|
43 |
40 42
|
eleqtrd |
|
44 |
|
simprr |
|
45 |
|
eqid |
|
46 |
3 12 4 45
|
lmodvscl |
|
47 |
39 43 44 46
|
syl3anc |
|
48 |
|
eqid |
|
49 |
1 48 2
|
frlmbasf |
|
50 |
7 49
|
sylan |
|
51 |
9
|
adantr |
|
52 |
|
inidm |
|
53 |
47 50 51 38 38 52
|
off |
|
54 |
|
ovexd |
|
55 |
53
|
ffund |
|
56 |
|
fvexd |
|
57 |
|
eqid |
|
58 |
1 57 2
|
frlmbasfsupp |
|
59 |
7 58
|
sylan |
|
60 |
8
|
fveq2d |
|
61 |
60
|
eqcomd |
|
62 |
61
|
breq2d |
|
63 |
62
|
adantr |
|
64 |
59 63
|
mpbird |
|
65 |
64
|
fsuppimpd |
|
66 |
|
ssidd |
|
67 |
6
|
ad2antrr |
|
68 |
|
eqid |
|
69 |
3 12 4 68 34
|
lmod0vs |
|
70 |
67 69
|
sylancom |
|
71 |
|
fvexd |
|
72 |
66 70 50 51 38 71
|
suppssof1 |
|
73 |
|
suppssfifsupp |
|
74 |
54 55 56 65 72 73
|
syl32anc |
|
75 |
3 34 37 38 53 74
|
gsumcl |
|
76 |
33 75
|
chvarvv |
|
77 |
76 5
|
fmptd |
|
78 |
36
|
adantr |
|
79 |
7
|
adantr |
|
80 |
|
eleq1w |
|
81 |
80
|
anbi2d |
|
82 |
|
oveq1 |
|
83 |
82
|
feq1d |
|
84 |
81 83
|
imbi12d |
|
85 |
84 53
|
chvarvv |
|
86 |
85
|
adantrr |
|
87 |
53
|
adantrl |
|
88 |
82
|
breq1d |
|
89 |
81 88
|
imbi12d |
|
90 |
89 74
|
chvarvv |
|
91 |
90
|
adantrr |
|
92 |
74
|
adantrl |
|
93 |
3 34 23 78 79 86 87 91 92
|
gsumadd |
|
94 |
2 22
|
lmodvacl |
|
95 |
94
|
3expb |
|
96 |
18 95
|
sylan |
|
97 |
|
oveq1 |
|
98 |
97
|
oveq2d |
|
99 |
|
ovex |
|
100 |
98 5 99
|
fvmpt |
|
101 |
96 100
|
syl |
|
102 |
16
|
adantr |
|
103 |
|
simprl |
|
104 |
|
simprr |
|
105 |
|
eqid |
|
106 |
1 2 102 79 103 104 105 22
|
frlmplusgval |
|
107 |
106
|
oveq1d |
|
108 |
1 48 2
|
frlmbasf |
|
109 |
7 108
|
sylan |
|
110 |
109
|
adantrr |
|
111 |
110
|
ffnd |
|
112 |
50
|
adantrl |
|
113 |
112
|
ffnd |
|
114 |
111 113 79 79 52
|
offn |
|
115 |
9
|
ffnd |
|
116 |
115
|
adantr |
|
117 |
114 116 79 79 52
|
offn |
|
118 |
85
|
ffnd |
|
119 |
118
|
adantrr |
|
120 |
53
|
ffnd |
|
121 |
120
|
adantrl |
|
122 |
119 121 79 79 52
|
offn |
|
123 |
8
|
fveq2d |
|
124 |
123
|
ad2antrr |
|
125 |
124
|
oveqd |
|
126 |
125
|
oveq1d |
|
127 |
6
|
ad2antrr |
|
128 |
110
|
ffvelrnda |
|
129 |
41
|
ad2antrr |
|
130 |
128 129
|
eleqtrd |
|
131 |
112
|
ffvelrnda |
|
132 |
131 129
|
eleqtrd |
|
133 |
9
|
adantr |
|
134 |
133
|
ffvelrnda |
|
135 |
|
eqid |
|
136 |
3 23 12 4 45 135
|
lmodvsdir |
|
137 |
127 130 132 134 136
|
syl13anc |
|
138 |
126 137
|
eqtrd |
|
139 |
111
|
adantr |
|
140 |
113
|
adantr |
|
141 |
7
|
ad2antrr |
|
142 |
|
simpr |
|
143 |
|
fnfvof |
|
144 |
139 140 141 142 143
|
syl22anc |
|
145 |
144
|
oveq1d |
|
146 |
115
|
ad2antrr |
|
147 |
|
fnfvof |
|
148 |
139 146 141 142 147
|
syl22anc |
|
149 |
|
fnfvof |
|
150 |
140 146 141 142 149
|
syl22anc |
|
151 |
148 150
|
oveq12d |
|
152 |
138 145 151
|
3eqtr4d |
|
153 |
114
|
adantr |
|
154 |
|
fnfvof |
|
155 |
153 146 141 142 154
|
syl22anc |
|
156 |
119
|
adantr |
|
157 |
121
|
adantr |
|
158 |
|
fnfvof |
|
159 |
156 157 141 142 158
|
syl22anc |
|
160 |
152 155 159
|
3eqtr4d |
|
161 |
117 122 160
|
eqfnfvd |
|
162 |
107 161
|
eqtrd |
|
163 |
162
|
oveq2d |
|
164 |
101 163
|
eqtrd |
|
165 |
|
oveq1 |
|
166 |
165
|
oveq2d |
|
167 |
|
ovex |
|
168 |
166 5 167
|
fvmpt |
|
169 |
168
|
ad2antrl |
|
170 |
|
oveq1 |
|
171 |
170
|
oveq2d |
|
172 |
|
ovex |
|
173 |
171 5 172
|
fvmpt |
|
174 |
173
|
ad2antll |
|
175 |
169 174
|
oveq12d |
|
176 |
93 164 175
|
3eqtr4d |
|
177 |
2 3 22 23 25 27 77 176
|
isghmd |
|
178 |
6
|
adantr |
|
179 |
7
|
adantr |
|
180 |
21
|
fveq2d |
|
181 |
180
|
eleq2d |
|
182 |
181
|
biimpar |
|
183 |
182
|
adantrr |
|
184 |
53
|
adantrl |
|
185 |
184
|
ffvelrnda |
|
186 |
53
|
feqmptd |
|
187 |
186 74
|
eqbrtrrd |
|
188 |
187
|
adantrl |
|
189 |
3 12 45 34 23 4 178 179 183 185 188
|
gsumvsmul |
|
190 |
18
|
adantr |
|
191 |
|
simprl |
|
192 |
|
simprr |
|
193 |
2 11 10 13
|
lmodvscl |
|
194 |
190 191 192 193
|
syl3anc |
|
195 |
1 48 2
|
frlmbasf |
|
196 |
179 194 195
|
syl2anc |
|
197 |
196
|
ffnd |
|
198 |
115
|
adantr |
|
199 |
197 198 179 179 52
|
offn |
|
200 |
|
dffn2 |
|
201 |
199 200
|
sylib |
|
202 |
201
|
feqmptd |
|
203 |
8
|
fveq2d |
|
204 |
203
|
ad2antrr |
|
205 |
204
|
oveqd |
|
206 |
205
|
oveq1d |
|
207 |
6
|
ad2antrr |
|
208 |
|
simplrl |
|
209 |
180
|
ad2antrr |
|
210 |
208 209
|
eleqtrrd |
|
211 |
50
|
ffvelrnda |
|
212 |
41
|
ad2antrr |
|
213 |
211 212
|
eleqtrd |
|
214 |
213
|
adantlrl |
|
215 |
9
|
ffvelrnda |
|
216 |
215
|
adantlr |
|
217 |
|
eqid |
|
218 |
3 12 4 45 217
|
lmodvsass |
|
219 |
207 210 214 216 218
|
syl13anc |
|
220 |
206 219
|
eqtrd |
|
221 |
197
|
adantr |
|
222 |
115
|
ad2antrr |
|
223 |
7
|
ad2antrr |
|
224 |
|
simpr |
|
225 |
|
fnfvof |
|
226 |
221 222 223 224 225
|
syl22anc |
|
227 |
20
|
fveq2d |
|
228 |
227
|
ad2antrr |
|
229 |
208 228
|
eleqtrrd |
|
230 |
|
simplrr |
|
231 |
|
eqid |
|
232 |
1 2 48 223 229 230 224 10 231
|
frlmvscaval |
|
233 |
232
|
oveq1d |
|
234 |
226 233
|
eqtrd |
|
235 |
50
|
ffnd |
|
236 |
235
|
adantrl |
|
237 |
236
|
adantr |
|
238 |
237 222 223 224 149
|
syl22anc |
|
239 |
238
|
oveq2d |
|
240 |
220 234 239
|
3eqtr4d |
|
241 |
240
|
mpteq2dva |
|
242 |
202 241
|
eqtrd |
|
243 |
242
|
oveq2d |
|
244 |
184
|
feqmptd |
|
245 |
244
|
oveq2d |
|
246 |
245
|
oveq2d |
|
247 |
189 243 246
|
3eqtr4d |
|
248 |
|
oveq1 |
|
249 |
248
|
oveq2d |
|
250 |
|
ovex |
|
251 |
249 5 250
|
fvmpt |
|
252 |
194 251
|
syl |
|
253 |
173
|
oveq2d |
|
254 |
253
|
ad2antll |
|
255 |
247 252 254
|
3eqtr4d |
|
256 |
2 10 4 11 12 13 18 6 21 177 255
|
islmhmd |
|