Metamath Proof Explorer


Theorem frlmup4

Description: Universal property of the free module by existential uniqueness. (Contributed by Stefan O'Rear, 7-Mar-2015)

Ref Expression
Hypotheses frlmup4.r R = Scalar T
frlmup4.f F = R freeLMod I
frlmup4.u U = R unitVec I
frlmup4.c C = Base T
Assertion frlmup4 T LMod I X A : I C ∃! m F LMHom T m U = A

Proof

Step Hyp Ref Expression
1 frlmup4.r R = Scalar T
2 frlmup4.f F = R freeLMod I
3 frlmup4.u U = R unitVec I
4 frlmup4.c C = Base T
5 eqid Base F = Base F
6 eqid T = T
7 eqid x Base F T x T f A = x Base F T x T f A
8 simp1 T LMod I X A : I C T LMod
9 simp2 T LMod I X A : I C I X
10 1 a1i T LMod I X A : I C R = Scalar T
11 simp3 T LMod I X A : I C A : I C
12 2 5 4 6 7 8 9 10 11 frlmup1 T LMod I X A : I C x Base F T x T f A F LMHom T
13 ovex T x T f A V
14 13 7 fnmpti x Base F T x T f A Fn Base F
15 1 lmodring T LMod R Ring
16 15 3ad2ant1 T LMod I X A : I C R Ring
17 3 2 5 uvcff R Ring I X U : I Base F
18 16 9 17 syl2anc T LMod I X A : I C U : I Base F
19 18 ffnd T LMod I X A : I C U Fn I
20 18 frnd T LMod I X A : I C ran U Base F
21 fnco x Base F T x T f A Fn Base F U Fn I ran U Base F x Base F T x T f A U Fn I
22 14 19 20 21 mp3an2i T LMod I X A : I C x Base F T x T f A U Fn I
23 ffn A : I C A Fn I
24 23 3ad2ant3 T LMod I X A : I C A Fn I
25 18 adantr T LMod I X A : I C y I U : I Base F
26 25 ffnd T LMod I X A : I C y I U Fn I
27 simpr T LMod I X A : I C y I y I
28 fvco2 U Fn I y I x Base F T x T f A U y = x Base F T x T f A U y
29 26 27 28 syl2anc T LMod I X A : I C y I x Base F T x T f A U y = x Base F T x T f A U y
30 simpl1 T LMod I X A : I C y I T LMod
31 simpl2 T LMod I X A : I C y I I X
32 1 a1i T LMod I X A : I C y I R = Scalar T
33 simpl3 T LMod I X A : I C y I A : I C
34 2 5 4 6 7 30 31 32 33 27 3 frlmup2 T LMod I X A : I C y I x Base F T x T f A U y = A y
35 29 34 eqtrd T LMod I X A : I C y I x Base F T x T f A U y = A y
36 22 24 35 eqfnfvd T LMod I X A : I C x Base F T x T f A U = A
37 coeq1 m = x Base F T x T f A m U = x Base F T x T f A U
38 37 eqeq1d m = x Base F T x T f A m U = A x Base F T x T f A U = A
39 38 rspcev x Base F T x T f A F LMHom T x Base F T x T f A U = A m F LMHom T m U = A
40 12 36 39 syl2anc T LMod I X A : I C m F LMHom T m U = A
41 18 ffund T LMod I X A : I C Fun U
42 funcoeqres Fun U m U = A m ran U = A U -1
43 42 ex Fun U m U = A m ran U = A U -1
44 43 ralrimivw Fun U m F LMHom T m U = A m ran U = A U -1
45 41 44 syl T LMod I X A : I C m F LMHom T m U = A m ran U = A U -1
46 eqid LBasis F = LBasis F
47 2 3 46 frlmlbs R Ring I X ran U LBasis F
48 16 9 47 syl2anc T LMod I X A : I C ran U LBasis F
49 eqid LSpan F = LSpan F
50 5 46 49 lbssp ran U LBasis F LSpan F ran U = Base F
51 48 50 syl T LMod I X A : I C LSpan F ran U = Base F
52 5 49 lspextmo ran U Base F LSpan F ran U = Base F * m F LMHom T m ran U = A U -1
53 20 51 52 syl2anc T LMod I X A : I C * m F LMHom T m ran U = A U -1
54 rmoim m F LMHom T m U = A m ran U = A U -1 * m F LMHom T m ran U = A U -1 * m F LMHom T m U = A
55 45 53 54 sylc T LMod I X A : I C * m F LMHom T m U = A
56 reu5 ∃! m F LMHom T m U = A m F LMHom T m U = A * m F LMHom T m U = A
57 40 55 56 sylanbrc T LMod I X A : I C ∃! m F LMHom T m U = A