Metamath Proof Explorer


Theorem frlmval

Description: Value of the "free module" function. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypothesis frlmval.f F = R freeLMod I
Assertion frlmval R V I W F = R m I × ringLMod R

Proof

Step Hyp Ref Expression
1 frlmval.f F = R freeLMod I
2 elex R V R V
3 elex I W I V
4 id r = R r = R
5 fveq2 r = R ringLMod r = ringLMod R
6 5 sneqd r = R ringLMod r = ringLMod R
7 6 xpeq2d r = R i × ringLMod r = i × ringLMod R
8 4 7 oveq12d r = R r m i × ringLMod r = R m i × ringLMod R
9 xpeq1 i = I i × ringLMod R = I × ringLMod R
10 9 oveq2d i = I R m i × ringLMod R = R m I × ringLMod R
11 df-frlm freeLMod = r V , i V r m i × ringLMod r
12 ovex R m I × ringLMod R V
13 8 10 11 12 ovmpo R V I V R freeLMod I = R m I × ringLMod R
14 2 3 13 syl2an R V I W R freeLMod I = R m I × ringLMod R
15 1 14 eqtrid R V I W F = R m I × ringLMod R