Database
BASIC LINEAR ALGEBRA
Vectors and free modules
Free modules
frlmval
Next ⟩
frlmlmod
Metamath Proof Explorer
Ascii
Unicode
Theorem
frlmval
Description:
Value of the "free module" function.
(Contributed by
Stefan O'Rear
, 1-Feb-2015)
Ref
Expression
Hypothesis
frlmval.f
⊢
F
=
R
freeLMod
I
Assertion
frlmval
⊢
R
∈
V
∧
I
∈
W
→
F
=
R
⊕
m
I
×
ringLMod
⁡
R
Proof
Step
Hyp
Ref
Expression
1
frlmval.f
⊢
F
=
R
freeLMod
I
2
elex
⊢
R
∈
V
→
R
∈
V
3
elex
⊢
I
∈
W
→
I
∈
V
4
id
⊢
r
=
R
→
r
=
R
5
fveq2
⊢
r
=
R
→
ringLMod
⁡
r
=
ringLMod
⁡
R
6
5
sneqd
⊢
r
=
R
→
ringLMod
⁡
r
=
ringLMod
⁡
R
7
6
xpeq2d
⊢
r
=
R
→
i
×
ringLMod
⁡
r
=
i
×
ringLMod
⁡
R
8
4
7
oveq12d
⊢
r
=
R
→
r
⊕
m
i
×
ringLMod
⁡
r
=
R
⊕
m
i
×
ringLMod
⁡
R
9
xpeq1
⊢
i
=
I
→
i
×
ringLMod
⁡
R
=
I
×
ringLMod
⁡
R
10
9
oveq2d
⊢
i
=
I
→
R
⊕
m
i
×
ringLMod
⁡
R
=
R
⊕
m
I
×
ringLMod
⁡
R
11
df-frlm
⊢
freeLMod
=
r
∈
V
,
i
∈
V
⟼
r
⊕
m
i
×
ringLMod
⁡
r
12
ovex
⊢
R
⊕
m
I
×
ringLMod
⁡
R
∈
V
13
8
10
11
12
ovmpo
⊢
R
∈
V
∧
I
∈
V
→
R
freeLMod
I
=
R
⊕
m
I
×
ringLMod
⁡
R
14
2
3
13
syl2an
⊢
R
∈
V
∧
I
∈
W
→
R
freeLMod
I
=
R
⊕
m
I
×
ringLMod
⁡
R
15
1
14
eqtrid
⊢
R
∈
V
∧
I
∈
W
→
F
=
R
⊕
m
I
×
ringLMod
⁡
R