Metamath Proof Explorer


Theorem frlmvscafval

Description: Scalar multiplication in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Hypotheses frlmvscafval.y Y = R freeLMod I
frlmvscafval.b B = Base Y
frlmvscafval.k K = Base R
frlmvscafval.i φ I W
frlmvscafval.a φ A K
frlmvscafval.x φ X B
frlmvscafval.v ˙ = Y
frlmvscafval.t · ˙ = R
Assertion frlmvscafval φ A ˙ X = I × A · ˙ f X

Proof

Step Hyp Ref Expression
1 frlmvscafval.y Y = R freeLMod I
2 frlmvscafval.b B = Base Y
3 frlmvscafval.k K = Base R
4 frlmvscafval.i φ I W
5 frlmvscafval.a φ A K
6 frlmvscafval.x φ X B
7 frlmvscafval.v ˙ = Y
8 frlmvscafval.t · ˙ = R
9 1 2 frlmrcl X B R V
10 6 9 syl φ R V
11 1 2 frlmpws R V I W Y = ringLMod R 𝑠 I 𝑠 B
12 10 4 11 syl2anc φ Y = ringLMod R 𝑠 I 𝑠 B
13 12 fveq2d φ Y = ringLMod R 𝑠 I 𝑠 B
14 2 fvexi B V
15 eqid ringLMod R 𝑠 I 𝑠 B = ringLMod R 𝑠 I 𝑠 B
16 eqid ringLMod R 𝑠 I = ringLMod R 𝑠 I
17 15 16 ressvsca B V ringLMod R 𝑠 I = ringLMod R 𝑠 I 𝑠 B
18 14 17 ax-mp ringLMod R 𝑠 I = ringLMod R 𝑠 I 𝑠 B
19 13 7 18 3eqtr4g φ ˙ = ringLMod R 𝑠 I
20 19 oveqd φ A ˙ X = A ringLMod R 𝑠 I X
21 eqid ringLMod R 𝑠 I = ringLMod R 𝑠 I
22 eqid Base ringLMod R 𝑠 I = Base ringLMod R 𝑠 I
23 rlmvsca R = ringLMod R
24 8 23 eqtri · ˙ = ringLMod R
25 eqid Scalar ringLMod R = Scalar ringLMod R
26 eqid Base Scalar ringLMod R = Base Scalar ringLMod R
27 fvexd φ ringLMod R V
28 rlmsca R V R = Scalar ringLMod R
29 10 28 syl φ R = Scalar ringLMod R
30 29 fveq2d φ Base R = Base Scalar ringLMod R
31 3 30 eqtrid φ K = Base Scalar ringLMod R
32 5 31 eleqtrd φ A Base Scalar ringLMod R
33 12 fveq2d φ Base Y = Base ringLMod R 𝑠 I 𝑠 B
34 2 33 eqtrid φ B = Base ringLMod R 𝑠 I 𝑠 B
35 15 22 ressbasss Base ringLMod R 𝑠 I 𝑠 B Base ringLMod R 𝑠 I
36 34 35 eqsstrdi φ B Base ringLMod R 𝑠 I
37 36 6 sseldd φ X Base ringLMod R 𝑠 I
38 21 22 24 16 25 26 27 4 32 37 pwsvscafval φ A ringLMod R 𝑠 I X = I × A · ˙ f X
39 20 38 eqtrd φ A ˙ X = I × A · ˙ f X