Metamath Proof Explorer


Theorem frlmvscaval

Description: Coordinates of a scalar multiple with respect to a basis in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015)

Ref Expression
Hypotheses frlmvscaval.y Y = R freeLMod I
frlmvscaval.b B = Base Y
frlmvscaval.k K = Base R
frlmvscaval.i φ I W
frlmvscaval.a φ A K
frlmvscaval.x φ X B
frlmvscaval.j φ J I
frlmvscaval.v ˙ = Y
frlmvscaval.t · ˙ = R
Assertion frlmvscaval φ A ˙ X J = A · ˙ X J

Proof

Step Hyp Ref Expression
1 frlmvscaval.y Y = R freeLMod I
2 frlmvscaval.b B = Base Y
3 frlmvscaval.k K = Base R
4 frlmvscaval.i φ I W
5 frlmvscaval.a φ A K
6 frlmvscaval.x φ X B
7 frlmvscaval.j φ J I
8 frlmvscaval.v ˙ = Y
9 frlmvscaval.t · ˙ = R
10 1 2 3 4 5 6 8 9 frlmvscafval φ A ˙ X = I × A · ˙ f X
11 10 fveq1d φ A ˙ X J = I × A · ˙ f X J
12 fnconstg A K I × A Fn I
13 5 12 syl φ I × A Fn I
14 1 3 2 frlmbasf I W X B X : I K
15 4 6 14 syl2anc φ X : I K
16 15 ffnd φ X Fn I
17 fnfvof I × A Fn I X Fn I I W J I I × A · ˙ f X J = I × A J · ˙ X J
18 13 16 4 7 17 syl22anc φ I × A · ˙ f X J = I × A J · ˙ X J
19 fvconst2g A K J I I × A J = A
20 5 7 19 syl2anc φ I × A J = A
21 20 oveq1d φ I × A J · ˙ X J = A · ˙ X J
22 11 18 21 3eqtrd φ A ˙ X J = A · ˙ X J