Metamath Proof Explorer


Theorem frmd0

Description: The identity of the free monoid is the empty word. (Contributed by Mario Carneiro, 27-Sep-2015)

Ref Expression
Hypothesis frmdmnd.m M = freeMnd I
Assertion frmd0 = 0 M

Proof

Step Hyp Ref Expression
1 frmdmnd.m M = freeMnd I
2 eqid Base M = Base M
3 eqid 0 M = 0 M
4 eqid + M = + M
5 wrd0 Word I
6 1 2 frmdbas I V Base M = Word I
7 5 6 eleqtrrid I V Base M
8 1 2 4 frmdadd Base M x Base M + M x = ++ x
9 7 8 sylan I V x Base M + M x = ++ x
10 1 2 frmdelbas x Base M x Word I
11 10 adantl I V x Base M x Word I
12 ccatlid x Word I ++ x = x
13 11 12 syl I V x Base M ++ x = x
14 9 13 eqtrd I V x Base M + M x = x
15 1 2 4 frmdadd x Base M Base M x + M = x ++
16 15 ancoms Base M x Base M x + M = x ++
17 7 16 sylan I V x Base M x + M = x ++
18 ccatrid x Word I x ++ = x
19 11 18 syl I V x Base M x ++ = x
20 17 19 eqtrd I V x Base M x + M = x
21 2 3 4 7 14 20 ismgmid2 I V = 0 M
22 0g0 = 0
23 fvprc ¬ I V freeMnd I =
24 1 23 eqtrid ¬ I V M =
25 24 fveq2d ¬ I V 0 M = 0
26 22 25 eqtr4id ¬ I V = 0 M
27 21 26 pm2.61i = 0 M