Metamath Proof Explorer


Theorem frmdadd

Description: Value of the monoid operation of the free monoid construction. (Contributed by Mario Carneiro, 27-Sep-2015)

Ref Expression
Hypotheses frmdbas.m M = freeMnd I
frmdbas.b B = Base M
frmdplusg.p + ˙ = + M
Assertion frmdadd X B Y B X + ˙ Y = X ++ Y

Proof

Step Hyp Ref Expression
1 frmdbas.m M = freeMnd I
2 frmdbas.b B = Base M
3 frmdplusg.p + ˙ = + M
4 1 2 3 frmdplusg + ˙ = ++ B × B
5 4 oveqi X + ˙ Y = X ++ B × B Y
6 ovres X B Y B X ++ B × B Y = X ++ Y
7 5 6 eqtrid X B Y B X + ˙ Y = X ++ Y