Metamath Proof Explorer


Theorem frmdbas

Description: The base set of a free monoid. (Contributed by Mario Carneiro, 27-Sep-2015) (Revised by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses frmdbas.m M = freeMnd I
frmdbas.b B = Base M
Assertion frmdbas I V B = Word I

Proof

Step Hyp Ref Expression
1 frmdbas.m M = freeMnd I
2 frmdbas.b B = Base M
3 eqidd I V Word I = Word I
4 eqid ++ Word I × Word I = ++ Word I × Word I
5 1 3 4 frmdval I V M = Base ndx Word I + ndx ++ Word I × Word I
6 5 fveq2d I V Base M = Base Base ndx Word I + ndx ++ Word I × Word I
7 wrdexg I V Word I V
8 eqid Base ndx Word I + ndx ++ Word I × Word I = Base ndx Word I + ndx ++ Word I × Word I
9 8 grpbase Word I V Word I = Base Base ndx Word I + ndx ++ Word I × Word I
10 7 9 syl I V Word I = Base Base ndx Word I + ndx ++ Word I × Word I
11 6 10 eqtr4d I V Base M = Word I
12 2 11 eqtrid I V B = Word I