Step |
Hyp |
Ref |
Expression |
1 |
|
frmdmnd.m |
|
2 |
|
frmdgsum.u |
|
3 |
|
coeq2 |
|
4 |
|
co02 |
|
5 |
3 4
|
eqtrdi |
|
6 |
5
|
oveq2d |
|
7 |
|
id |
|
8 |
6 7
|
eqeq12d |
|
9 |
8
|
imbi2d |
|
10 |
|
coeq2 |
|
11 |
10
|
oveq2d |
|
12 |
|
id |
|
13 |
11 12
|
eqeq12d |
|
14 |
13
|
imbi2d |
|
15 |
|
coeq2 |
|
16 |
15
|
oveq2d |
|
17 |
|
id |
|
18 |
16 17
|
eqeq12d |
|
19 |
18
|
imbi2d |
|
20 |
|
coeq2 |
|
21 |
20
|
oveq2d |
|
22 |
|
id |
|
23 |
21 22
|
eqeq12d |
|
24 |
23
|
imbi2d |
|
25 |
1
|
frmd0 |
|
26 |
25
|
gsum0 |
|
27 |
26
|
a1i |
|
28 |
|
oveq1 |
|
29 |
|
simprl |
|
30 |
|
simprr |
|
31 |
30
|
s1cld |
|
32 |
2
|
vrmdf |
|
33 |
32
|
adantr |
|
34 |
|
ccatco |
|
35 |
29 31 33 34
|
syl3anc |
|
36 |
|
s1co |
|
37 |
30 33 36
|
syl2anc |
|
38 |
2
|
vrmdval |
|
39 |
38
|
adantrl |
|
40 |
39
|
s1eqd |
|
41 |
37 40
|
eqtrd |
|
42 |
41
|
oveq2d |
|
43 |
35 42
|
eqtrd |
|
44 |
43
|
oveq2d |
|
45 |
1
|
frmdmnd |
|
46 |
45
|
adantr |
|
47 |
|
wrdco |
|
48 |
29 33 47
|
syl2anc |
|
49 |
|
eqid |
|
50 |
1 49
|
frmdbas |
|
51 |
50
|
adantr |
|
52 |
|
wrdeq |
|
53 |
51 52
|
syl |
|
54 |
48 53
|
eleqtrrd |
|
55 |
31 51
|
eleqtrrd |
|
56 |
55
|
s1cld |
|
57 |
|
eqid |
|
58 |
49 57
|
gsumccat |
|
59 |
46 54 56 58
|
syl3anc |
|
60 |
49
|
gsumws1 |
|
61 |
55 60
|
syl |
|
62 |
61
|
oveq2d |
|
63 |
49
|
gsumwcl |
|
64 |
46 54 63
|
syl2anc |
|
65 |
1 49 57
|
frmdadd |
|
66 |
64 55 65
|
syl2anc |
|
67 |
62 66
|
eqtrd |
|
68 |
59 67
|
eqtrd |
|
69 |
44 68
|
eqtrd |
|
70 |
69
|
eqeq1d |
|
71 |
28 70
|
syl5ibr |
|
72 |
71
|
expcom |
|
73 |
72
|
a2d |
|
74 |
9 14 19 24 27 73
|
wrdind |
|
75 |
74
|
impcom |
|