Step |
Hyp |
Ref |
Expression |
1 |
|
frmdmnd.m |
|
2 |
|
eqidd |
|
3 |
|
eqidd |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
1 4 5
|
frmdadd |
|
7 |
1 4
|
frmdelbas |
|
8 |
1 4
|
frmdelbas |
|
9 |
|
ccatcl |
|
10 |
7 8 9
|
syl2an |
|
11 |
6 10
|
eqeltrd |
|
12 |
11
|
3adant1 |
|
13 |
1 4
|
frmdbas |
|
14 |
13
|
3ad2ant1 |
|
15 |
12 14
|
eleqtrrd |
|
16 |
|
simpr1 |
|
17 |
16 7
|
syl |
|
18 |
|
simpr2 |
|
19 |
18 8
|
syl |
|
20 |
|
simpr3 |
|
21 |
1 4
|
frmdelbas |
|
22 |
20 21
|
syl |
|
23 |
|
ccatass |
|
24 |
17 19 22 23
|
syl3anc |
|
25 |
16 18 10
|
syl2anc |
|
26 |
13
|
adantr |
|
27 |
25 26
|
eleqtrrd |
|
28 |
1 4 5
|
frmdadd |
|
29 |
27 20 28
|
syl2anc |
|
30 |
|
ccatcl |
|
31 |
19 22 30
|
syl2anc |
|
32 |
31 26
|
eleqtrrd |
|
33 |
1 4 5
|
frmdadd |
|
34 |
16 32 33
|
syl2anc |
|
35 |
24 29 34
|
3eqtr4d |
|
36 |
16 18 6
|
syl2anc |
|
37 |
36
|
oveq1d |
|
38 |
1 4 5
|
frmdadd |
|
39 |
18 20 38
|
syl2anc |
|
40 |
39
|
oveq2d |
|
41 |
35 37 40
|
3eqtr4d |
|
42 |
|
wrd0 |
|
43 |
42 13
|
eleqtrrid |
|
44 |
1 4 5
|
frmdadd |
|
45 |
43 44
|
sylan |
|
46 |
7
|
adantl |
|
47 |
|
ccatlid |
|
48 |
46 47
|
syl |
|
49 |
45 48
|
eqtrd |
|
50 |
1 4 5
|
frmdadd |
|
51 |
50
|
ancoms |
|
52 |
43 51
|
sylan |
|
53 |
|
ccatrid |
|
54 |
46 53
|
syl |
|
55 |
52 54
|
eqtrd |
|
56 |
2 3 15 41 43 49 55
|
ismndd |
|