| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frmdmnd.m |
|
| 2 |
|
eqidd |
|
| 3 |
|
eqidd |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
1 4 5
|
frmdadd |
|
| 7 |
1 4
|
frmdelbas |
|
| 8 |
1 4
|
frmdelbas |
|
| 9 |
|
ccatcl |
|
| 10 |
7 8 9
|
syl2an |
|
| 11 |
6 10
|
eqeltrd |
|
| 12 |
11
|
3adant1 |
|
| 13 |
1 4
|
frmdbas |
|
| 14 |
13
|
3ad2ant1 |
|
| 15 |
12 14
|
eleqtrrd |
|
| 16 |
|
simpr1 |
|
| 17 |
16 7
|
syl |
|
| 18 |
|
simpr2 |
|
| 19 |
18 8
|
syl |
|
| 20 |
|
simpr3 |
|
| 21 |
1 4
|
frmdelbas |
|
| 22 |
20 21
|
syl |
|
| 23 |
|
ccatass |
|
| 24 |
17 19 22 23
|
syl3anc |
|
| 25 |
16 18 10
|
syl2anc |
|
| 26 |
13
|
adantr |
|
| 27 |
25 26
|
eleqtrrd |
|
| 28 |
1 4 5
|
frmdadd |
|
| 29 |
27 20 28
|
syl2anc |
|
| 30 |
|
ccatcl |
|
| 31 |
19 22 30
|
syl2anc |
|
| 32 |
31 26
|
eleqtrrd |
|
| 33 |
1 4 5
|
frmdadd |
|
| 34 |
16 32 33
|
syl2anc |
|
| 35 |
24 29 34
|
3eqtr4d |
|
| 36 |
16 18 6
|
syl2anc |
|
| 37 |
36
|
oveq1d |
|
| 38 |
1 4 5
|
frmdadd |
|
| 39 |
18 20 38
|
syl2anc |
|
| 40 |
39
|
oveq2d |
|
| 41 |
35 37 40
|
3eqtr4d |
|
| 42 |
|
wrd0 |
|
| 43 |
42 13
|
eleqtrrid |
|
| 44 |
1 4 5
|
frmdadd |
|
| 45 |
43 44
|
sylan |
|
| 46 |
7
|
adantl |
|
| 47 |
|
ccatlid |
|
| 48 |
46 47
|
syl |
|
| 49 |
45 48
|
eqtrd |
|
| 50 |
1 4 5
|
frmdadd |
|
| 51 |
50
|
ancoms |
|
| 52 |
43 51
|
sylan |
|
| 53 |
|
ccatrid |
|
| 54 |
46 53
|
syl |
|
| 55 |
52 54
|
eqtrd |
|
| 56 |
2 3 15 41 43 49 55
|
ismndd |
|