Metamath Proof Explorer


Theorem frmdss2

Description: A subset of generators is contained in a submonoid iff the set of words on the generators is in the submonoid. This can be viewed as an elementary way of saying "the monoidal closure of J is Word J ". (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses frmdmnd.m M = freeMnd I
frmdgsum.u U = var FMnd I
Assertion frmdss2 I V J I A SubMnd M U J A Word J A

Proof

Step Hyp Ref Expression
1 frmdmnd.m M = freeMnd I
2 frmdgsum.u U = var FMnd I
3 simpl1 I V J I A SubMnd M U J A x Word J I V
4 simpl2 I V J I A SubMnd M U J A x Word J J I
5 sswrd J I Word J Word I
6 4 5 syl I V J I A SubMnd M U J A x Word J Word J Word I
7 simprr I V J I A SubMnd M U J A x Word J x Word J
8 6 7 sseldd I V J I A SubMnd M U J A x Word J x Word I
9 1 2 frmdgsum I V x Word I M U x = x
10 3 8 9 syl2anc I V J I A SubMnd M U J A x Word J M U x = x
11 simpl3 I V J I A SubMnd M U J A x Word J A SubMnd M
12 wrdf x Word J x : 0 ..^ x J
13 12 ad2antll I V J I A SubMnd M U J A x Word J x : 0 ..^ x J
14 13 frnd I V J I A SubMnd M U J A x Word J ran x J
15 cores ran x J U J x = U x
16 14 15 syl I V J I A SubMnd M U J A x Word J U J x = U x
17 2 vrmdf I V U : I Word I
18 17 3ad2ant1 I V J I A SubMnd M U : I Word I
19 18 ffnd I V J I A SubMnd M U Fn I
20 fnssres U Fn I J I U J Fn J
21 19 4 20 syl2an2r I V J I A SubMnd M U J A x Word J U J Fn J
22 df-ima U J = ran U J
23 simprl I V J I A SubMnd M U J A x Word J U J A
24 22 23 eqsstrrid I V J I A SubMnd M U J A x Word J ran U J A
25 df-f U J : J A U J Fn J ran U J A
26 21 24 25 sylanbrc I V J I A SubMnd M U J A x Word J U J : J A
27 wrdco x Word J U J : J A U J x Word A
28 7 26 27 syl2anc I V J I A SubMnd M U J A x Word J U J x Word A
29 16 28 eqeltrrd I V J I A SubMnd M U J A x Word J U x Word A
30 gsumwsubmcl A SubMnd M U x Word A M U x A
31 11 29 30 syl2anc I V J I A SubMnd M U J A x Word J M U x A
32 10 31 eqeltrrd I V J I A SubMnd M U J A x Word J x A
33 32 expr I V J I A SubMnd M U J A x Word J x A
34 33 ssrdv I V J I A SubMnd M U J A Word J A
35 34 ex I V J I A SubMnd M U J A Word J A
36 simpl1 I V J I A SubMnd M x J I V
37 simp2 I V J I A SubMnd M J I
38 37 sselda I V J I A SubMnd M x J x I
39 2 vrmdval I V x I U x = ⟨“ x ”⟩
40 36 38 39 syl2anc I V J I A SubMnd M x J U x = ⟨“ x ”⟩
41 simpr I V J I A SubMnd M x J x J
42 41 s1cld I V J I A SubMnd M x J ⟨“ x ”⟩ Word J
43 40 42 eqeltrd I V J I A SubMnd M x J U x Word J
44 43 ralrimiva I V J I A SubMnd M x J U x Word J
45 18 ffund I V J I A SubMnd M Fun U
46 18 fdmd I V J I A SubMnd M dom U = I
47 37 46 sseqtrrd I V J I A SubMnd M J dom U
48 funimass4 Fun U J dom U U J Word J x J U x Word J
49 45 47 48 syl2anc I V J I A SubMnd M U J Word J x J U x Word J
50 44 49 mpbird I V J I A SubMnd M U J Word J
51 sstr2 U J Word J Word J A U J A
52 50 51 syl I V J I A SubMnd M Word J A U J A
53 35 52 impbid I V J I A SubMnd M U J A Word J A